Distributed Generation & Alternative Energy Journal

Home / Archives / 2023: Vol 38 Iss 1 /

Advancements in Distributed Generation and Electric Vehicle Technologies

Optimal Control of Hybrid Power System Integrated with Distributed Generation and Electric Vehicle

Farhana Fayaz

NIT Kurukshetra, Haryana, India, 136119

Gobind Lal Pahuja

NIT Kurukshetra, Haryana, India, 136119

DOI: https://doi.org/10.13052/dgaej2156-3306.3819

Keywords: Load frequency control (LFC), hybrid power system (HPS), optimization technique, robust control, electric vehicle (EV)

Abstract

This study presents load-frequency-control of a two-area hybrid power system (HPS) incorporating distributed generation, geo-thermal plant, thermal plant and electric-vehicle. Such a complex system with non-linearities leads the power system towards more complexity and accordingly requires a resilient controller to handle such complexity. In this regard, optimal cascaded proportional integral – multistage proportional integral derivative (cascaded PI-MSPID) is explored for developed power system. The efficiency of optimal controller is validated by comparing it with other controllers. The influence of flywheel energy storage on system dynamics is demonstrated. Further, the electric vehicle's participation in enhancing the system stability is presented. Moreover, the developed system is subjected to an intense load deviation which is a practical data taken from one of the literature. It is demonstrated that responses achieved for proposed cascaded PI-MSPID controller effectively handles the system disturbances, which reflects the strength of proposed cascaded PI-MSPID controller.

Author Biographies

Farhana Fayaz, NIT Kurukshetra, Haryana, India, 136119

Farhana Fayaz graduated in 2014 from BGSB University, Rajouri, J& K, India and obtained Master of Engineering and Technology in Power System Engineering. At present, she is pursuing PhD from NIT