REVIEW

Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview

Priyanka Sati¹ · Praveen Dhyani² · Eshita Sharma³ · Dharam Chand Attri⁴ · Arvind Jantwal⁵ · Rajni Devi⁶ · Daniela Calina⁷ · Javad Sharifi-Rad⁸

Accepted: 16 February 2024 / Published online: 18 March 2024 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Purpose of Review This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations.

Recent Findings Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action.

Summary This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesityrelated T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.

Keywords Bioactive compounds · Diabetes mellitus · Gut microbiota · Inflammation · Molecular mechanisms · Natural products

Introduction

Diabetes mellitus has emerged as one of the most pressing public health issues of the twenty-first century [1••]. According to global estimates, approximately 422 million

Daniela Calina daniela.calina@umfcv.ro
Javad Sharifi-Rad javad.sharifirad@gmail.com; javad@uazuay.edu.ec
Priyanka Sati geminipriyanka23@gmail.com
Praveen Dhyani praveendhyani86@gmail.com
Eshita Sharma esshh11@gmail.com
Dharam Chand Attri dcattri13@gmail.com
Arvind Jantwal arvind.jantwal@gmail.com
Paini Davi

Rajni Devi rajnirajput66@gmail.com adults were living with diabetes in 2019, and this number is projected to soar to 551.8 million by 2030 [2•]. The condition is not only accompanied by debilitating microvascular and macrovascular complications but also exerts an immense toll on healthcare systems globally

- ¹ Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
- ² Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
- ³ Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
- ⁴ Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
- ⁵ Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
- ⁶ Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
- ⁷ Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- ⁸ Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador