## Source identification of Organic Matter using C/N Ratio in freshwater lakes of Kashmir Valley, Western Himalaya, India

AASIF MOHMAD LONE<sup>1</sup>, RAYEES AHMAD SHAH<sup>1</sup>, HEMA ACHYUTHAN<sup>1\*</sup>, MOHAMMD RAFIQ<sup>2</sup>

<sup>1</sup>Department of Geology, Anna University Chennai 600025, India <sup>2</sup>Centre for Remote Sensing and Geoinformatics, Sathyabama Institute of Science and Technology, Chennai 600119, India Email (Corresponding author): hachyuthan@yahoo.com

Abstract: Assessing the organic matter (OM) content, its source and the nutrient loading in lake sediments helps limnologists to maintain the desired trophic status of lakes. The present study aims at investigating the spatial distribution and source of OM, CaCO<sub>3</sub> content, total nitrogen (TN) and carbon to nitrogen (C/N ratio) in the lake sediments of three freshwater (Manasbal, Wular and Anchar) lakes, from Kashmir valley, India. In all these lakes, finer sediment fractions (silt and clay) are dominant. Low to moderate C/N ratio in the lake sediments of Manasbal (15.00), Wular (11.86) and Anchar (12.32) suggest a combination of in situ phytoplanktons (macrophytes) and external sources such as domestic effluents and agricultural runoff as the major contributors of OM. The TN content (<3%) suggests nitrogen deficient lake systems and its distribution in the sediments is influenced by the presence of mixed OM sources. High C/N ratio and a positive correlation of OM with coarser fractions indicate high terrestrial input in Manasbal Lake sediments. Principal component analysis (PCA) suggest that primary in situ productivity within the lakes, terrestrial input from catchment watershed and anthropogenic activities occurring along the lake margins control the deposition and distribution of OM, TN, sediment grain size and CaCO<sub>3</sub> content. This study highlights that these lakes are dynamic ecosystems with large amount of OM contributed by terrestrial sources. Hence, different measures need to be implemented and continuously monitored to assess and quantify the extent of in situ and terrestrial OM loading in these lakes.

**Key words**: Freshwater lakes; Lake catchments; Lake bed sediments; Natural and anthropogenic nutrient inputs; Organic matter source.

सारांशः झील अवसादों में कार्बनिक पदार्थ की मात्रा, उसका स्रोत तथा पोषण भरण का आकलन सरोवैज्ञानिकों के लिए झीलों की अभीप्सित पोषी स्थिति बनाये रखने में सहायक होता है। प्रस्तुत अध्ययन में भारत की कश्मीर घाटी में स्थित तीन मधुर जल सरोवरों (मानसबल, वूलर तथा आँचर) के अवसादों में कार्बनिक पदार्थ के स्रोत, कैल्शियम कार्बोनेट की मात्रा, कुल नाइट्रोजन तथा कार्बन—नाइट्रोजन अनुपात का अध्ययन किया गया। इन सभी झीलों के अवसादों में सूक्ष्मकणिक भाग (सिल्ट तथा कले) अधिक है। अवसादों में कम से सामान्य कार्बन—नाइट्रोजन अनुपात (मानसबल 15.00; वूलर 11.86 तथा आँचर 12.32), उन्हीं झीलों में स्थित फाइटोप्लैक्टॉन (मैक्रोफाइट्स्) तथा बाहरी स्रोतों जैसे बहिःस्राव और कृषिजन अपवाहों से प्रभावित कार्बनिक पदार्थ के सिम्मश्रण का परिणाम है। मानसबल झील अवसादों के दीर्घकणिक भाग में कार्बन—नाइट्रोजन का अधिक अनुपात तथा उसका कार्बनिक पदार्थ के साथ घनात्मक सहसम्बन्ध भौमिक पदार्थ के अधिक आगमन को दर्शाता है। मुख्य घटक विश्लेषण झीलों में प्राथमिक स्वस्थाने उत्पत्ति, जलग्रहण जलसंभर से निवेशित पदार्थ तथा झील तटों पर होने वाले मानवीय क्रिया कलापों के सिम्मश्रित प्रभाव कार्बनिक पदार्थ कुल नाइट्रोजन के वितरण, कण आकार तथा कैल्शियम कार्बोनेट की मात्रा को प्रभावित करते हैं। यह अध्ययन प्रदर्शित करता है कि ये झीलें एक गतिशील पर्यावरण तंत्र हैं जहां भूमि स्रोतों से काफी मात्रा में कार्बनिक पदार्थ आ रहा है। अतएव इन झीलों में स्वस्थाने उत्पन्न और बाहय स्रोत प्राप्त कार्बिनक पदार्थ की मात्रा का आकलन करने तथा उसे नियन्त्रित करने के लिए भिन्न—भिन्न पद्वतियों का अवलम्बन करना होगा।

**संकेत शब्द**ः मधुर जल सरोवर, झील जलग्रहण, झील संस्तर अवसाद, प्राकृतिक एवं मानवजनित पोशक निवेश, कार्बनिक पदार्थ स्रोत।

## INTRODUCTION

Freshwater lake basins are one of the most important natural ecosystems that act as major sedimentary and carbon sinks for nutrients (Bassi *et al.* 2014; Garn *et al.* 2003). Lake ecosystems are immensely important for any region as they play a significant role as freshwater resources and for ecological and economic sustainability. Lake sediments also constitute a source of nutrients to the water column and other biota present in the water column, thereby influencing primary productivity (Spivak *et al.* 2009). Nutrients, allochthonous and autochthonous organic deposits in lakes are controlled by several factors including climate, high level of primary productivity, sedimentation rate, residence time, inorganic diluents and oxygen deficiency (Woszczyk *et al.* 2011).

Sedimentary OM is one of the most important components of terrestrial and marine lake sediments generally derived from

in situ (autochthonous) and/or terrestrial (allochthonous) sources (Meyers 1994). Lake sediments play an important function and act as an efficient natural trap for organic rich sediments and hence act as a natural regulator of the various processes that occur within the lake ecosystems (Burone et al. 2003). The particulate detritus of plants that grow in lakes and around the lake catchment areas comprises the primary source of OM to the recent lake deposits. The relative contribution of OM from these two sources is strongly controlled by lake morphology, watershed topography and the relative abundances of lake and watershed plants (Meyers & Ishiwatari 1993). However, lake sediments are strongly influenced by the natural and human settlement characteristics around the catchments. The sediments reflect a mixture of organic and inorganic materials derived chiefly from the lake and its catchment, with trace quantities derived from the cosmogenic sources (Tarras-Wahlberg et al. 2002; Yao & Xue 2015).

