ARTICLE IN PRESS

Tetrahedron Letters xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Iodine catalyzed solvent-free cross-dehydrogenative coupling of arylamines and H-phosphonates for the synthesis of N-arylphosphoramidates under atmospheric conditions

Bashir Ahmad Dar^a, Nisar A. Dangroo^{a,b}, Amit Gupta^a, Aarti Wali^a, Mohammad Akbar Khuroo^b, Ram A. Vishwakarma^{a,*}, Baldev Singh^{a,*}

^a Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India ^b Department of Chemistry, University of Kashmir, Hazratbal, Srinigar 190006, India

ARTICLE INFO

Article history: Received 2 December 2013 Revised 13 January 2014 Accepted 15 January 2014 Available online xxxx

Keywords: Phosphoramidates Molecular iodine Anilines Neat conditions Room temperature

ABSTRACT

Aerobic oxidative coupling of various arylamines and H-phosphonates to the corresponding N-arylphosphoramidates has been achieved under solvent-free conditions using molecular iodine. This protocol works at room temperature furnishing the corresponding P–N coupling products in moderate to high yields.

© 2014 Published by Elsevier Ltd.

Phosphoramidates are present as structural motifs in a number of biologically active natural products like agrocin 84,¹ phosmidosine,² and microcin C7.³ Bioactive compounds like N-phosphoryl peptides, N-phosphoryl amino acids, and phosphoramidate substituted nucleosides also contain phosphoramidate functional groups as a key structural unit.⁴ Phosphoramidates are used in industry as pharmaceutical prodrugs.⁵ Several aryloxy triester phosphoramidates (GS-9140, GS-9131, thymectacin (NB1011), and stampidine) are in clinical trials.⁶ In the domain of medicinal chemistry, phosphonamidates have been used as surrogates for amide bonds in the synthesis of pharmaceutically active peptide-based protease inhibitors since the P(=O)-NH moiety mimics the tetrahedral transition state during amide bond hydrolysis.⁷ Phosphoramidates are also used as flame retardants⁸ and are being used in analytical chemistry to improve ionization efficiency and suppress matrix-related ion effects in MALDI-TOF mass spectrometry.⁹ N-arylphosphoramidates have also been employed for the synthesis of azetidines,¹⁰ aziridines,¹¹ imines¹² and various heterocycles such as quinazolinediones.¹³ As a consequence of their broad range applications, a plethora of methods have been developed for phosphoramidate synthesis. The two most common standard procedures used extensively for the synthesis of phosphoramidates are

0040-4039/\$ - see front matter \odot 2014 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.tetlet.2014.01.064

(i) reactions of amines with dibenzyl or dialkyl phosphites using CCl₄ or a better activating agent¹⁴ and (ii) reaction of amines with phosphorodichloridates or phosphorochloridates using a base.^{4b,15} Other methods include the oxidation of phosphite triesters with I₂ in the presence of alkylamines and the reduction of nitroarenes with triethyl phophite followed by phosphorylation with triethyl phosphite.¹⁶ These procedures are all based on the prefunctionalization-defunctionalization strategy. Consequently these procedures use additional active agents or produce undesired by-products. Preparation and handling of hazardous phosphoryl halides, stoichiometric use of CCl₄, use of excess base and long reaction time present an obvious limitation. The Staudinger-phosphite reaction offers one alternative for phosphoramidate synthesis,¹⁷ but this method is not ideal as it relies on the preparation and use of organic azides. More recently Cu(I) salts like CuBr¹⁸ and CuI¹⁹ have successfully been employed for oxidative coupling of amines and H-phosphonates to generate phosphoramidates.

^{*} Corresponding authors. Tel.: +91 (0191) 2572002; fax: +91 (0191) 2548607. *E-mail address*: drbaldev1@gmail.com (B. Singh).