



## Isolation, characterisation, antifungal activity and validated UPLC/MS/MS method for quantification of novel compound from *Artemisia tournefortiana* Reichb

Mahpara Qadir<sup>a</sup>, Nisar Ahmad Dangroo<sup>b</sup>, Vijai Kant Agnihotri<sup>c</sup> and Wajaht Amin Shah<sup>a</sup>

<sup>a</sup>Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India; <sup>b</sup>Department of Chemistry, NIT, Srinagar, Jammu and Kashmir, India; <sup>c</sup>Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

## ABSTRACT

Investigation into the chemical diversity of Artemisia tournefortiana resulted in isolation of one novel compound named tournefortin A and two known artemetin and tournefortin B bioactive compounds. Tournefortin B is first time obtained from natural source. The structure of all the isolated compounds were elucidated by detailed 1D and 2D NMR including HSQC, HMBC, <sup>1</sup>H-<sup>1</sup>HOSY and NOESY spectroscopic techniques. Minimum inhibitory concentration (MIC) of all the tested compounds against tested fungal strains lies between 0.4 and 6.4 µg/mL and lowest MIC of 0.4 µg/mL of compound tournefortin A was found against Alternaria alternate. All the isolated compounds were quantified through UPLC/MS/MS and the developed method will serve as a first fingerprint method for the rapid determination of these phytomolecules in various plant extracts. Tournefortin B was found to be present in higher concentration. The higher antifungal effect of the isolated compounds suggests that this plant could act as potential source of antimicrobial agents.

## **ARTICLE HISTORY**

Received 13 January 2021 Accepted 6 April 2021

## **KEYWORDS**

Artemisia tournefortiana Reichb; asteraceae; tournefortin A; UPLC/MS/ MS; antifungal activity