

 Int. J. Circuits and Architecture Design, Vol. 2, Nos. 3/4, 2016 201

 Copyright © 2016 Inderscience Enterprises Ltd.

An efficient realisation of FIFO buffers for NoC
routers using technology dependent optimisations
targeting LUT based FPGAs

Liyaqat Nazir* and Roohie Naaz Mir
Department of CSE,
National Institute of Technology Srinagar, India
Email: Liyaqat_02phd13@nitsri.net
Email: Naaz310@nitsri.net
*Corresponding author

Abstract: The communication between processing elements is facing
challenges due to power, area and latency. The temporary flit storage blocks
needed during communication contributes to the major power and area
consumption in Network-on-Chip. Moreover, with modern FPGAs causing a
rapid shift from prototype designing to low and medium volume productions, it
becomes imperative to consider architectural optimisations that are specific to
FPGA fabric only. This article attempts to provide novel optimised FIFO buffer
realisation using technology dependent mapping strategies. This will help
designers to adopt efficient design of NoC microarchitecture routers. The
properties of proposed realisation are studied with a micro-architecture router
for several packet flit rates given at an input port. The proposed realisation will
help in the elimination of the presence of fixed inherent FIFO buffer
instantiations as the proposed realisation gives us an idea to explore underlying
FPGA fabric more efficiently for realisation of the FIFO than existing.

Keywords: depth; FIFO; network-on-chip; NoC; flits; traffic.

Reference to this paper should be made as follows: Nazir, L. and Mir, R.N.
(2016) ‘An efficient realisation of FIFO buffers for NoC routers using
technology dependent optimisations targeting LUT based FPGAs’, Int. J.
Circuits and Architecture Design, Vol. 2, Nos. 3/4, pp.201–232.

Biographical notes: Liyaqat Nazir is currently a PhD Scholar in National
Institute of Technology (NIT) from India. He received his BTech degree in
Electronics and Communications Engineering from IUST, India, in 2011. He
did his MTech degree in Communications and Information Technology from
NIT Srinagar, India in 2013. Currently, he is a PhD Scholar in the Department
of CSE, NIT, Srinagar. His main research interests include network-on-chip,
digital VLSI design, mixed signal design. Reconfigurable architectures. He is a
graduate student member of IEEE. He is also a lifetime member of IETE.

Roohie Naaz Mir received her BE (Hons) in Electrical Engineering from
University of Kashmir (India), ME in Computer Science & Engineering from
IISc Bangalore (India) in 1990 and PhD from University of Kashmir, (India) in
2005. She is currently a Professor in the Department of CSE at NIT Srinagar,
India. She is the co-author of many scientific publications in international
journals and conferences. Her current research interests include reconfigurable
computing, security and routing in wireless ad-hoc networks, sensor networks,
high level computer architecture design network on chip, digital VLSI design,
mixed signal design. She is a senior member of IEEE.

 202 L. Nazir and R.N. Mir

1 Introduction

In the past few years, with the concept of network-on-chip (NoC) communication
architecture, NoC has attracted a lot of attention by providing higher bandwidth (BW)
and higher performance architectures for communication on the chip (Marculescu et al.,
2009). NoC can provide simple and scalable architectures if implemented on
reconfigurable platforms (Osterloh et al., 2008). Network on chip offers a new
communication paradigm for system on chip (SoC) design (Maher et al., 2013). Many
processing elements of SoC are connected through NoC routers which are arranged in
some regular fashion such as mesh, linear, torus, 2D, 3D type of topologies. To achieve
high performance, the router should provide high BW and low latency (Ahmaed et al.,
2010). Although the performance of the NoC is normally seen by its throughput, which is
defined by the network topology, router throughput and the traffic load on the network
(Anderson et al., 1993). Therefore, the routers for a NoC must be designed to meet
latency and throughput requirements amidst tight area and power constraints; this is a
primary challenge designer are facing as many-core systems scale (So and Chin, 1992).
As router complexity increases with BW demands, very simple routers (non-pipelined,
wormhole, no virtual channels (VCs), limited buffering) can be built when high
throughput is not needed, so require low area and power overhead (Buyukkoc, 1986;
Kleinrock, 1975). Challenges arise when the latency and throughput demands on on-chip
networks become increasingly high (Jerger and Peh, 2009). A router’s architecture
determines its critical path delay which affects per-hop delay and overall network latency
(Serfozo, 2012; Perros and Altiok, 1986). Router micro architecture also impacts network
energy as it determines the circuit components in a router and their activity. The
implementation of the routing, flow control and the actual router pipeline will affect the
efficiency at which buffers and links are used and thus overall network throughput
(Marculescu et al. 2009). The area footprint of the router is clearly determined by the
chosen router micro architecture and underlying circuits. The critical path of the data path
units in the router and the efficiency of control path units determine the router throughput
(Karol and Hluchyj, 1988; McKeown et al., 1996; Chang et al., 2013; Phanibhushana,
2011). The data paths of the on-chip router comprise of buffers, VC and switching fabric
and the control paths of on-chip communication routers are largely composed of arbiters
and allocators as illustrated in Figure 1 (Guo et al., 2005). Allocators are used to allocate
VC and to perform matching between groups of resources on each cycle (Dally and
Towels, 2013; Mckeown, 1995; Lee et al., 2003; Mello et al., 2015; Gharan and Khan,
2012). Upon the flit arrival at the input port, contention for access to the fabric with cells
at both input and output occurs. The router units exchange necessary handshake signals
for data/flit transfer (Buyukkoc, 1986; Peh and Dally, 2000). A VC allocator thus
performs allocation between the input flits and allows at most one flit contending at the
input port to be destined to the selected output port (Gupta and Mckeown, 1999). In order
to reduce the line of blocking, the rest of the contending flits are buffered into the VC or
buffers of the router so as to service them in coming appropriate clock cycles (Dally,
1992). Buffers have simple logic and functionality as compared to the control logic, but
in networks they consume most of the area resources (Saastamoinen et al., 2013).
However, the smaller the buffers are, the bigger is the possibility that some traffic is lost

 An efficient realisation of FIFO buffers for NoC routers 203

during data flit transfer. As the buffering demands storage capacity, i.e., registers or
memory, it rapidly increases area costs. Hence, the right sizing of the buffers is very
important. For successful buffer design, as exact traffic characteristics as possible are also
needed (Pande et al., 2003). However, elimination of input buffers eliminates the need of
VCs besides causing the reduction in area and power (Michelogiannakis and Dally,
2013). This increases the chances for head-of-line blocking and causes reduction of
performance in a NoC based systems. On the other hand, NoC router architecture
generally needs large amount of field programmable gate arrays (FPGA) resources
(Schelle and Grunwald, 2006, 2009) which is the barrier to widespread adoption of NoC
routers on FPGA platforms. Moreover, the limited number of in build block buffer
instantiations available with a given platform increases the barrier to next higher level
(Virtex-5, 2012; Virtex-6, 2014). Traditional implementations of FIFO buffering policy
have been platform independence oriented, where the design process consists of
developing the necessary high level code for application level with some thought given to
the underlying architecture to optimise the code quality (Woods et al., 2008; Peh and
Dally, 2001). However, the functional diversity and complexity can be exploited to reveal
hidden parallelism helping us to formally capture concurrencies both within control logic
models of computation and among multiple control logic models of general logic design
(Bertozzi et al., 2005; Jantsch and Tenhunen, 2003). The high-level concurrent tasks can
be then mapped to the underlying communication and computation resources (Sunderam,
1990). This has provided designers with sufficient impetus to look for platform oriented
solutions where the underlying hardware can be utilised to develop a block level solution
that best matches the functional diversity and complexity in buffering policies by
developing the right level of parallelism. Accordingly, attempts have been made to
develop custom and reconfigurable architectures for realising various buffering policies
in application specific integrated circuits (ASIC) and FPGA (Saastamoinen et al., 2003;
Schelle and Grunwald, 2008; Oveis-Gharan and Khan, 2015; Kogan et al., 2012; Huang
and Hwang, 2006; Chelcea and Nowick, 2000; Khan and Ansari, 2011; Zhang et al.,
2011).

In this paper, we, therefore, propose a novel FPGA-based efficient realisation of
FIFO buffer that will aid in the efficient implementation of NoC router micro
architectures on LUT based reconfigurable platforms. We have adopted technology
dependent (TD) optimisations based approach in this paper. The approach is implemented
successfully on Xilinx’s Virtex-5, Virtex-6 and Virtex-7 FPGA devices. As the
performance speed-up achieved using TD approach is a strong function of the nature of
the target FPGA family. The optimisations presented in this work are targeted for FPGAs
with 6-input LUTs. Therefore, for comparisons, we have considered only those
implementations that use FPGAs with 6-input LUTs. From experimentation; it is
observed that FPGA-based implementation with the TD approach results not only the
consumption of lesser amount of resources in designing the buffering network but also
gives the possibility of realising more number of FIFO buffers efficiently thus
overcoming the barrier of having limited number of inherent FIFO buffers or block
RAMs of FPGA device. The new realisation will help the NoC design community to
explore of having NoC based systems with larger mesh order with better efficiency in
terms of the specific application.

 204 L. Nazir and R.N. Mir

Figure 1 Block diagram of NoC router communication (see online version for colours)

Router Switch NoC channel Router Switch

NoC channel

NoC channel

Last Flit in the channel, process of de-allocation of channel

First Flit in the channel, process of allocation of channel

Packet generator

Packet processor

The rest of the paper is organised as follows. Section 2 discusses the related work.
Section 3 discusses general FIFO architecture. Section 4 discusses the FIFO realisation
proposed in this paper. Section 5 discusses the preliminary terminology and the
architectural details. Section 6 discusses the TD optimisation of the multiply-adder unit.
Synthesis, implementation and discussions are carried out in Section 7. Conclusions are
drawn in Section 8 and references are listed at the end.

2 Related work

Increased advances in the NoC based communication paradigm have attracted a lot of
attention from industry and academia. Being a newer field, developing a newer a design
methodology for NoC based communication presents novel and exciting challenges for
the EDA community. With the large requirement of hardware resources some works had
been reported in the ASIC domain, but to transfer the idea efficiently and entirely on
reconfigurable platforms is yet a milestone to be achieved. NoC advances on
reconfigurable platforms are limited by the availability of the limited amount of logic
resources and memory on FPGAs (Schelle and Grunwald, 2008). Reconfigurable
platforms fail to provide the amount of logic needed for the implementation of an
efficient NoC system. Buffers are critical components of a NoC router and channel
buffers at each router in the NoC have a serious impact on the over-all area (Ogras et al.,
2005). In NoC based architectures buffering policies play a key role in determining the

 An efficient realisation of FIFO buffers for NoC routers 205

throughput, latency, area utilisation and energy consumption. In order to reduce the
implementation overhead in NoC, Efforts are required to minimise the overall use of
buffering resources. Hence, a considerable research effort has been devoted to buffering
policies that can be adopted in NoC router micro architecture in the last few years. While
these policies focus mainly on energy efficiency and latency, but they also increase the
complexity of the router. Throughout, the key parameter of the NoC router needs to be
maintained while reducing the complexity of router design. Sophisticated input-buffered
routers have been proposed for extending throughput, latency and clock speed. For
instance, high-speed design of a FIFO has been proposed for extending steady data
transmission between asynchronous clock domains in work (Zhang et al., 2011). The
authors have exploited the instantiation of complete inbuilt RAM block available in the
Xilinx based reconfigurable platforms. This has certainly provided an efficient FIFO
buffering architecture as the in-build cores or instantiations are highly efficient. However,
because of limited blocks available, they are unable to suffice the demands of a NoC
based number. The authors in work (Khan and Ansari, 2011) have presented a novel idea
of realising a FIFO buffer by presenting a custom cell-based design. The proposed design
is aimed to provide a reliable flow of flits with reduced the latency and channel blocking
overheads in a network on chip based system. The design is better than earlier reported,
but the authors of the work have not given thought to the TD optimisations in the work,
as a result, the work inefficiently consumes large FPGA resources available with the
reduction in the performance also. A similar work has been reported in Liu et al. (2014).
The authors present a design method of asynchronous FIFO memory that primarily aims
at buffer’s capacity to prevent spillovers despite the fullness of data. The work is
inefficient no thought is being given to the underlying architecture of the FPGA platform.
Some other articles that report the work mainly aimed at throughput and latency
optimisation of router architecture, indirectly by buffer implementation, but logic
resource utilisation had not been considered as a performance parameter include the work
in Peh and Dally (2000), the authors proposes a flit-reservation flow control, which sends
control flits ahead of data flits, and timestamps these control flits so that buffers can be
allocated just-in-time when data flits arrive. However, this still relies on input buffers.
The improvement of the congestion of incoming packets can be also checked by the VC
scheme as presented in work (Mello et al., 2005; Gharan and Khan, 2012). VC scheme
multiplexes a physical channel using VCs, leading to the reduction in latency and
increase in network throughput. The insertion of VCs also enables to implement policies
for allocating the physical channel BW, which enables support for quality of service
(QoS) in applications (Saastamoinen et al., 2003). The authors in work (Lee et al., 2011)
have presented low word length pipelined FIFO buffer. The proposed buffer is designed
using the micro-pipeline protocol that is capable to provide relatively higher throughput.
The higher throughput is achieved at the cost of the pipelined protocol which in turn
requires high FPGA resource overhead hence resource inefficient. Moreover, this high
throughput is also shown at smaller packet lengths, increasing the packet length or the
state size beyond the considered size will definitely affect the throughput and the
operating frequency. All the above-mentioned approaches use technology independent
optimisations to enhance the performance of the NoC router. In this paper, we take an
alternate approach and propose realisations that are based on TD optimisations. As
already mentioned the performance speedup achieved using TD approach is a strong
function of the nature of the target FPGA family. The optimisations presented in this

 206 L. Nazir and R.N. Mir

work are targeted for FPGAs with 6-input LUTs. Therefore, for comparisons, we have
considered only those implementations that use FPGAs with 6-input LUTs.

Figure 2 Block diagram of NoC router

N4, λ4

w

Switch

Matrix

Routing logic,
Arbitration and

Allocaton

S

E
N

LE

FIFO

FIFO

FI
FO

FI
FO

W

N

S

E

wL N E

N1, λ1

N2, λ2

N3,λ3
N5, λ5

Allocator

Allocator

Allocator

Allocator

Allocator

Switch
Allocator

3 FIFO queuing scheme

An abstract FIFO provides a push and a pop interface and informs its connecting modules
when it is full or empty. A push (write) is done when valid data are present at the input of
the FIFO and the FIFO is not full. At the read side, a pop (read) occurs when the
upstream channel is ready to receive new data and the FIFO is not empty, i.e., it has valid
data to send. There are two types of FIFO designs and architectural schemes: serial and
parallel (Benini and Micheli, 2006; Choi and Pinkston, 2004; Donghyun et al., 2007; Yoo
et al., 2008; Forstner, 1999). The serial FIFO scheme such as shift registers the primitive
FIFO generation that works by fall-through principle (or pipeline). However, with the
advancement of architecture and circuit styling techniques the architectures of
conventional FIFOs are constantly being improved. Currently, most of the FIFOs used
are of parallel type, which are faster than serial FIFO (Ling et al., 2005). This type of
buffering scheme finds wide application in network on chip due to its relation to the fall
through concept where the new arrival flit is stored (pushed) at the tail location of FIFO,
and with each shift request, flits are shifted one location (slot) toward the head of queue.
The process of pushing data into the asynchronous FIFO is done by continuously

 An efficient realisation of FIFO buffers for NoC routers 207

monitoring full and empty control signals from the FIFO buffer by the sender. The sender
sets the request signal (push_req signal) after the data to he sent are ready. That data flits
are on control basis continuously pushed into the consecutive buffer locations. The
process of popping data from the asynchronous FIFO is equal to pushing process except
that the data is supplied by the FIFO and obtained by the receiver. The control logic
block contains control logic needed to control push pop operations on the actual memory
block.

Figure 3 Block diagram of proposed circular buffer (see online version for colours)

Write enable

D=0
Empty

Read Enable

D=Buffer length

Read enable

Read Clock

Buffer full

Write Enable

Read

D

Write Clock

Read Address
logic controller

Write Address
logic control ler

RAM LUTs

TMD

C_in_select

4 Proposed FIFO realisation

We propose a novel FPGA based efficient realisation of FIFO buffer that will help in
efficient implementation of NoC router micro architectures. The algorithmic
interpretation of the proposed FIFO is presented in Algorithm 1. It describes the
step-by-step procedure to perform the read write operations for each location of the FIFO
memory. The target location for data flits to be stored temporarily is given by the loop
index i that varies from 0 to R-1, where R is the depth of the FIFO. The flits to be read
from the FIFO are represented by the loop index y. The algorithm is realised as a circular
array of identical cells RAM LUTs from SLICEM present in the FPGA fabric. The block
level illustration of the algorithm is shown in Figure 3. It mainly comprises of a pair of
separate addressable controllers, each for writing (push) and pop operations. A separate
full detector and empty detector logic block and control logic for the put operation and
get operation. The full and empty detectors are required to observe the state of the FIFO
and determine whether the FIFO is full or empty. The input and output behaviour of the
FIFO is controlled by the flow of two tokens, generated by a write address logic
controller logic and a read ad-dress logic controller respectively. A put token is used to
enqueue data items and a get token is used to dequeue data items. Once a data item is
enqueued, it is moved only when it is dequeued. If the signal to put token generator is
asserted, the FIFO enqueues one data item and rotates the put token to the left. If it is

 208 L. Nazir and R.N. Mir

de-asserted, the put token is stalled with no enqueue operation in the FIFO. Similarly, the
get controller enables and disables the get operations. Tokens move counter clockwise
through the array of LUT-based RAM cells. The LUT RAM cell having the
corresponding put token (tail of the queue) has permission to store the enqueued data
item, and the cell having the corresponding get token (head of the queue) has the
permission to dequeue its data to the neighbouring connecting node. The read address
logic controller and the write address logic controller logic are designed in such a way
that the get token is never ahead of the put token. After the token, has been consumed by
the LUT-based RAM cell, it will be passed to its left neighbour at the beginning of the
next clock cycle, after the respective operation is completed. The movement of tokens
across the LUT RAM cells is controlled both by interface requests as well as the state of
the FIFO (full or empty), which are combined into the global signals write and read.
Algorithm 1 FIFO buffering algorithm

 R = Number of rows of the FIFO

 x ← 0; /* Memory write address*/

 y ← 0; /* Memory Read address*/

 Empty ← 1;

 Full ← 0;

 D = x – y;

 While (en = 1) do

 While (x ≤ R – 1 and Full != 1 and Wen = 1) do

 Temp ← write(x);

 x ← x + 1;

 end while;

 If (x = R) then

 Full ← 0;

 End if;

 While(y ≤ R – 1 and D != 0 and Empty != 1 and Ren = 1) do

 read(y) ← Temp;

 y ← y + 1;

 end while;

 If (y = R – 1) then

 Empty = 1;

 End if;
end while;

 An efficient realisation of FIFO buffers for NoC routers 209

5 Preliminary terminology and architectural details

Logic synthesis FIFO buffer is concerned with realising a desired functionality with the
minimum possible cost. In the con-text of digital design of a buffering policy, the cost of
a circuit is a measure of its speed, area, power or any combination of these. The block
level illustration shown in Figure 3 illustrates the broad architectural details. The primary
blocks required to design the FIFO are the address logic controllers (ALC), token
distance tracking (TDT), token magnitude detection (TMD), control signal generation
blocks and a distributed RAM block (DRB). Distributed RAM is crucial to many
high-performance applications that require relatively small embedded RAM blocks, such
as FIFOs or small register files. The ALC are realised with the help of digital
synchronous counter logic network. Two separate n-bit ALC are required for separate
write and read operations of the FIFO into 2n RAM block location of each LUT-based
RAM block. The separate use of address logic controller block is required for the
separate address generation in respective ports. As we are targeting a ring FIFO buffer
therefore a synchronous counter is required for the desired operation. The logic level
diagram of an address logic controllers realised with help of fast carry4 chain present in
the FPGA target device is shown in Figure 4(a). The logic controller shown is capable of
providing an address realisation of FIFO with a depth order of 16 (24 = 16) with address
bits A0, A1, A2, A3. These address bits are used for physical address realisation of the
RAM blocks and are used by the TDT block. The TDT block is realised with the help of
a ripple carry subtraction block illustrated in Figure 5. The TDT for the FIFO is also
realised with the help of fast carry4 chain logic present in the target reconfigurable
platform. The TDT block takes inputs from TMD block as illustrated in Figure 3. The
logic network of a TMD is shown in Figure 4(b). TMD calculates the absolute distance
between the tokens generated by ALC by providing a signal C_in_select input to the TDT
block. TDT logic provides output to simple logic networks needed for both read and
write ports and are called as the signal generation blocks. The signal generation blocks
upon suitable receiving suitable inputs from TDT block generate empty and full signals
that are needed for synchronisation of communication ports during the buffering of data
into the actual storage cells or distributive RAM block. The distributive RAM block has
been realised as 16 × 1 dual-port RAM16X1D primitive instantiation requiring two
16 × 1 LUT RAMs present within a single SLICEM slice of the underlying fabric, as
illustrated in Figure 6. Data is provided simultaneously to both LUT RAMs and
controlled by address A[3:0], WE, and WCLK. The dual port RAM (DPR) has two
access ports D and DPO as illustrated in Figure 6. For a general depth of n-bit FIFO
realisation, each 16 × 1-bit RAM is cascaded for n-occurrences for deeper and/or wider
memory applications in the form of an array of memory to store the data, with a minimal
timing penalty incurred through specialised logic resources. Distributed RAM writes
synchronously and reads asynchronously by two separate sets of control signal, address
and data busses. However, if required by the application, use the register associated with
each LUT to implement a synchronous read function. For dual-port RAM16X1D, the first

 210 L. Nazir and R.N. Mir

LUT out of two is required for the implementation of the A[3:0] port, i.e., the write and
read address, and the second LUT is required to implement an independent read-only
address, i.e., DPRA[3:0] port. The port A address buss is an address bus takes its address
values from write ALC, data bus output from the memory is DPO. Port D is the actual
data bus that provides data to be stored in data memory. The control signal blocks act as
an arbitration circuit used to determine which port has the right to write the memory,
when to read and when ports are trying to update the data in the same address at the same
time. Such kind of RAM realisation is supported by various target devices such as
Spartan-3 Virtex, Virtex-E, Spartan-II, Spartan-IIE, Virtex-II, and Virtex-II Pro FPGAs.

Figure 4 Logic illustration of (a) ALC (b) TMD

 A3 A2 A1 A0

C_out

Latch Latch Latch Latch

Reset

(a)

C_in1=0
C_in_select

(b)

 An efficient realisation of FIFO buffers for NoC routers 211

Figure 5 Logic illustration of TDT block

 a3 b3 b2 a2 a1 b1 b0 a0

 d3 d2 d1 d0

C_in

C_in_select

Figure 6 Block level illustration of DRB

SPO

DPO

Read

Read

WCLK

Address

Write

D

Dual- Port RAM

R/W Port

Read Port

6 TD optimisations

TD optimisations are used to transform the initial Boolean network into a circuit net list,
efficiently compatible with the target logic elements. The transformation is carried out
optimally in accordance with the logic distribution among the targeted elements so ensure
minimum possible LUT depth and minimum resource utilisation of the target device. The
target element in the majority of FPGAs is k-input LUT (Ling et al., 2005; Anderson and
Wang, 2011). It is a block RAM function generator that can implement any Boolean

 212 L. Nazir and R.N. Mir

function of k variables by directly storing its truth table. State-of-art FPGAs support 6-
input, dual output LUTs with the capacity of implementing a single 6-input Boolean
function or two 5-input Boolean functions that share inputs (Xilinx, 2009, 2010, 2011).
An efficient utilisation of this circuit element could lead to implementation of higher
logic densities resulting in a reduced fan-out of the logic nets and thus a minimal-depth
circuit.

TD optimisation using LUTs is carried out in two steps. Firstly, the entire digital
network is partitioned into suitable sub-networks or blocks. Individual nodes within each
sub-block are then covered with suitable cones that maps a local Boolean function or a
local truth table onto a separate LUT. Secondly a reverse process of the above step is
carried, i.e., the entire network is then reconstructed by assembling the individually
optimised sub-networks. Since the circular buffer is an assembly of ALC, TDT, TMD
and DRB. An optimised realisation of these individual sub networks could be adopted to
realise an optimised realisation of a circular buffering policy.

6.1 TD optimisation of ALC and TMD

Figure 4 shows the Boolean network realisation of ALC block and TMD block
respectively. The network is traversed beginning at the primary inputs and proceeding
toward the primary outputs. At each node in the network a best circuit is constructed that
implements the sub-network extending from the node to the primary inputs. Next, we try
to find an optimal covering for the nodes within each sub-network. A straight forward
approach would be to cover each node with a separate cone and then map the local
function implemented by each cone onto a separate LUT as shown in figure. The overall
depth at network output is there-fore, five and four respectively in each network. The
LUT count is 21 and 20 respectively, the shaded blocks in the figure represents the LUTs
consumed. Since we are targeting 6-input LUTs the implementation in Figure 4 leads to
severe under-utilisation of the available resources in the considered network graphs. The
number of required LUTs for realisation and the overall depth may be further reduced
with the help of tree minimisation in the sub-networks. A further saving in resources is
possible by exploiting the reconvergent PI nodes in the carry sub-network. A node in the
network with a fan-out greater than one that terminates at other nodes within the same
network is a source of reconvergent path. Reconvergent paths can be realised within the
LUT and the total number of inputs is reduced. This is shown in the circuit of Figures
8(a) and 8(b). The circuit, shown in Figure 8 is an optimised realisation of ALC and
TMD using 6-input LUTs. The depth of the circuit is now reduced to one and the total
LUT count is also reduced to three in the optimised realisation of ALC and the LUT
depth count in realising TMD has been reduced to one and LUT utilisation is reduced to
two. In order to ensure that the optimisation done prior to the design entry should not get
over-ridden during the mapping and PAR phases. We have re-defined the coding strategy
at the design entry phase. Instead of writing conventional inferential codes, we adopt an
instantiation based coding strategy, wherein a target element is directly called and the
desired functionality is assigned to it. This ensures a controlled mapping.

The following instantiations were used to map various network circuits illustrated in
Figure 8.

 An efficient realisation of FIFO buffers for NoC routers 213

Code Instantiation: 1, instantiations used to map the TMD network
 equalblock2: LUT6_2 generic map (INIT => X”9009000022b20000”) port map (AlessB(1),
AeqB(1), bin(3), ain(3), bin(2), ain(2),’1’,’1’);
 equalblock1: LUT6_2 generic map (INIT => X”9009000022b20000”) port map (AlessB(0),
AeqB(0), bin(1), ain(1), bin(0), ain(0),’1’,’1’);
 CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => ‘0’, CYINIT => ‘0’,
DI => AlessB, S => AeqB);

Code Instantiation: 2, instantiations used to map the ALC network
 LUT2_L_inst0 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(0), q1rd(0), sr(0));
 LUT2_L_inst1 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(1), q1rd(1), sr(1));
 LUT2_L_inst2 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(2), q1rd(2), sr(2));
 LUT2_L_inst3 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(3), q1rd(3), sr(3));
 CARRY4_inst_read : CARRY4 port map (COrd,Ord,’0’,’1’,DIrd,Sinrd);
 FDSE_inst0 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(0), C => clk,CE =>
Rd_ce,R => S, D => Ord(0));
 FDSE_inst1 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(1), C => clk,CE =>
Rd_ce,R => S, D => Ord(1));
 FDSE_inst2 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(2), C => clk,CE =>
 Rd_ce,R => S, D => Ord(2));
 FDSE_inst3 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(3), C => clk,CE =>
Rd_ce,R => S, D => Ord(3));

Code Instantiation: 3, instantiations used to map the TDT block
 LUT6_2_inst0 : LUT6_2 generic map (INIT => X”ac00000099000000”) port map (p(0),
g(0), bin(0), ain(0), cout1(1), ‘1’,’1’,’1’);
 LUT6_2_inst1 : LUT6_2 generic map (INIT => X”ac00000099000000”) port map (p(1),
g(1), bin(1), ain(1), cout1(1), ‘1’,’1’,’1’);
 LUT6_2_inst2 : LUT6_2 generic map (INIT => X”ac00000099000000”) port map (p(2),
g(2), bin(2), ain(2), cout1(1), ‘1’,’1’,’1’);
 LUT6_2_inst3 : LUT6_2 generic map (INIT => X”ac00000099000000”) port map (p(3),
g(3), bin(3), ain(3), cout1(1), ‘1’,’1’,’1’);
 CARRY4_inst_absolute_difference_circuit : CARRY4 port map (CO => cout2, O =>
difference, CI => ‘1’,CYINIT => ‘1’, DI => g, S => p);

The Boolean network now has an LUT count of only three and a depth of only one LUT
in case of ALC network. The complete efficient realisation of Boolean network is shown
in the Figure 7(a). The LUT utilisation in realising the ALC network is reduced from

 214 L. Nazir and R.N. Mir

seventeen LUTs to three LUTs and the LUT depth count is reduced to one and one carry4
chain. Similarly, the TD mapping of TMD network has resulted in a LUT count of two
and LUT depth of one and one carry4 chain as shown in Figure 7(b). The mapping
strategy is much efficient as compared to technology independent mapping as illustrated
in Figure 4(b) where the TMD network has a LUT count of 22 and LUT depth of four
LUTs. The high LUT depth would increase the critical path of the Boolean network
hence limits the frequency besides using high amount of hardware resources. The code
instantiation 3 is responsible for realisation of TD efficient mapping of TDT Boolean
network using 6-input LUTs. The strategy is able to reduce the LUT count of TDT
network from 52 LUTs to four LUTs and a reduction of LUT depth from six to one and a
carry4 chain is obtained as illustrated in Figure 7(c). Thus, greatly reducing the
propagation delay in the network through the LUT. This further helped in reduction of
the critical path of the overall FIFO hence increasing the efficiency of the FIFO in terms
of speed besides consuming less FPGA resources.

FPGAs have a well-defined design flow that starts with design entry and proceeds
through phases like synthesis, translation, mapping and place and route (PAR).It was
mentioned in the introductory section that the design cycle in FPGAs is simple due to the
availability of the computer aided design (CAD) tools that handle the majority of the TD
steps like mapping and PAR. TD optimisations mainly focus on improving the mapping
of Boolean networks onto target LUTs. However, with modern CAD tools, both
technology mapping and PAR are automated and the optimisation process is not
transparent to the user (Krishnamoorthy and Tessier, 2003). Thus any optimisation done
prior to the design entry may get over-ridden during the mapping and PAR phases. To
counter this issue we redefine the coding strategy at the design entry phase. Instead of
writing conventional inferential codes, we adopt an instantiation based coding strategy,
wherein a target element is directly called and the desired functionality is assigned to it.
This ensures a controlled mapping.
Figure 7 (a) Optimised utilisation of luts for realisation of Boolean network of (a) ALC (b) TMD

(c) TDT using 6-input LUT (see online version for colours)

 A3 A2 A1 A0

C_out

Latch Latch Latch Latch

Reset

LUT 01 LUT 02

Carry chain 01

SLICEL latches

LUT 03

(a)

 An efficient realisation of FIFO buffers for NoC routers 215

Figure 7 (a) Optimised utilisation of luts for realisation of Boolean network of (a) ALC (b) TMD
(c) TDT using 6-input LUT (continued) (see online version for colours)

a1 b1 a0 b0 b1 a1 b1 a1 b0 a1 a3 b3 a2 b2 b3 a3 b3 a3 b2 a2

C_in1=0
C_in_select

(b)

 a3 b3 b2 a2 a1 b1 b0 a0

 d3 d2 d1 d0

C_in

C_in_select

(c)

 216 L. Nazir and R.N. Mir

Figure 8 Dual-port DRB (16x1D) LUT realisation for single data bit (see online version
for colours)

16X1 LUT
RAM
(Read/
Write)

16X1 LUT
RAM

(Read only)

SPO

D

A[3:0]

WE

WCLK

DPRA [3:0]
DPO

SLICE M

(a)

16X1
LUT
RAM
(Read/
Write)

16X1
LUT
RAM
(Read
only)

16X1
LUT
RAM
(Read/
Write)

16X1
LUT
RAM
(Read
only)

16X1
LUT
RAM
(Read/
Write)

16X1
LUT
RAM
(Read
only)

16X1
LUT
RAM
(Read/
Write)

16X1
LUT
RAM
(Read
only)

Bit-n

Bit-0

Bit-1 Bit-2

(b)

 An efficient realisation of FIFO buffers for NoC routers 217

Figure 9 Resource utilisation for technology optimised for different state sizes

28 28 28

36 36 36

52 52 52

84 84 84

14
8

14
8

14
6

8bit xc5vlx50t xc6vlx195t xc7vlx485t
0

20

40

60

80

100

120

140

160

N
um

be
r

us
ed

Slice LUTs

 S -8
 S-16
 S-32
 S-64
 S-128

(a)

7

10 910 10 10

16 16 16

25 24 24

40 40 40

8bit xc5vlx50t xc6vlx195t xc7vlx485t
0

20

40

60

N
um

be
r u

se
d

Occupied Slices

 S -8
 S-16
 S-32
 S-64
 S-128

(b)

6.2 TD optimisation of RAM block

In every topology of a NoC based communication network, there is an exchange of data
flits between various IPs at a very rapid rate. Intermediate storage or buffering is always
required when data arrive at routing nodes at a high rate or in batches, but are processed
slowly or irregularly. Modern FPGAs provides a variety of slice elements to support
logic, arithmetic, and ROM functions. In addition to this, FPGAs is equipped with some
slices to provide additional functions such as storing data using distributed RAM and

 218 L. Nazir and R.N. Mir

shifting data with 32-bit registers. Slices that support these additional functions are called
SLICEM. Such basic memory capabilities are embedded within the CLBs of various
Xilinx FPGA families. Multiple LUTs in a SLICEM can be combined in various ways to
store large amount of data. The function generators (LUTs) in SLICEMs can be
implemented as an asynchronous RAM resource called a distributed RAM element. RAM
elements are configurable within a SLICEM to implement various configurations of
RAM: (Xilinx, 2012) Distributed RAM modules are synchronous (write) resources. A
synchronous read can be implemented along with a storage element or a flip-flop in the
same slice. The use of flip-flop for realising the distributed RAM, improves the
performance by decreasing the delay into the clock required to operate the flip-flop.
However, an additional clock latency is added. The distributed elements share the same
clock input. For a write operation, the write enable (WE) input, driven by either the CE or
WE pin of a SLICEM, must be set high. The memory structure of FIFO in this work is
realised with the help 16 × 1 dual-port DRB (16X1D). The 16X1D primitive requires
both 16 × 1 LUT RAMs within a single SLICEM slice, as shown in Figure 9. The first
16 × 1 LUT RAM, with output on single-port RAM (SPO), implements the read/write
port controlled by address A[3:0] to read and write. The second LUT RAM implements
the independent read-only port controlled by dual port read only address (DPRA), i.e.,
DPRA[3:0]. Data is presented simultaneously to both LUT RAMs, again controlled by
address A[3:0], WE, and WCLK. The entire RAM block is realised by cascading the
DRBs n-time for desired n-bit state size. The instantiation shown in code instantiation:
four is used to map the circuit in Figure 8(a). for bit-0 of the data flit.

Code Instantiations: 4, Instantiation to map 1-bit Dual-port DRB
RAM32X1D_inst_bit_0: RAM32X1D generic map (INIT => X”00000000”) – initial contents of
RAM port map (DPO(0), SPO(0), WrAd(0), WrAd(1), WrAd(2), WrAd(3), WrAd(4), Din(0),
Rdad(0), Rdad(1), Rdad(2), Rdad(3), Rdad(4),WCLK, wr_CE);

7 Synthesis, implementation and results

The implementation in this work targets FPGAs that have 6-input LUTs as the basic logic
element. In particular, we have considered devices from Virtex-5, Virtex-6 and Virtex-7
FPGA families from Xilinx. The implementation is carried for different word lengths of
the data flits needed to be stored. The parameters considered are area, timing and power
dissipation. The area is measured in terms of LUTs, flip-flops and slices utilised. Timing
analysis may be static or dynamic. Static timing analysis gives information about the
Minimum period and operating frequency of the design. Static timing analysis is done
post synthesis and post PAR. However, the metrics obtained after synthesis are often not
accurate enough due to the programmability of the FPGA which allows for interconnect
delays to change significantly between iterations. Therefore, the metrics presented in this
paper are post PAR. Dynamic timing analysis verifies the functionality of the design by
applying test vectors and checking for correct out-put vectors. An important result from
the dynamic timing analysis is the switching activity information captured in the value
charge dump (VCD) file. Apart from post PAR timing analysis the functionality of the
design is also verified by dumping the design on the Virtex-5, Virtex-7 platform. Power
dissipation is given by the sum of static power dissipation and dynamic power
dissipation. Static power dissipation is device specific and is mainly determined by the

 An efficient realisation of FIFO buffers for NoC routers 219

specific FPGA family. Dynamic power dissipation is related to the charging and
discharging of capacitances along different logic nodes and interconnects. Dynamic
power dissipation mainly consists of the logic power, clock power and signal power
(Deng et al., 2011). Logic power depends on the amount of on-chip resources being
utilised by the design. Clock power is proportional to the operating frequency. Signal
power depends on the switching activity and the density of the interconnects. For
simulation and metrics generation similar test benches have been used and are typically
designed to represent the worst-case scenario (in terms of switching activity) for data
entering into the FIFO buffer. Design entry is done using VHDL. As mentioned earlier
instantiation based coding strategy is used. The constraints relating to synthesis and
implementation are duly provided and a complete timing closure is ensured. Synthesis
and implementation is carried out in Xilinx ISE 12.1 (http://www.xilinx.com). Power
analysis is done using the Xpower analyser tool.

There has been no work regarding the implementation of FIFO buffering policies
using the TD optimisations. Since such optimisations are a strong function of the type
and nature of the underlying fabric, we have considered some technology independent
FIFO buffer realisations that utilise the same FPGA devices. The idea is to provide a
comparative analysis of the performance speed up that is achievable using the TD
approaches. However, our initial comparisons focus on the performance improvement
achieved over the buffer realisations based on programmable logic unit cells
implemented in (Khan and Ansari, 2011) and micro-pipeline-based implemented in Lee
et al., 2011 that are targeted for Xilinx FPGAs.

7.1 Area analysis

Area refers to the embedded resource utilisation, the resource utilisation in FPGA is a
vector, with coordinates specific to the given FPGA family. The resource utilisation is an
important measure predicting design or algorithm flexibility (Homsirikamol et al., 2011).
Table 1 provides a comparison of the different FPGA resources utilised by the realisation
of the proposed TD based FIFO buffering policy based on the technology optimised sub
blocks. The depth of FIFO buffer (denoted by d) is 16 and the flit order is varied as 23,
24, 25, 26 and 27. Target devices are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5,
Virtex-6 and Virtex-7. Further analysis is carried out by plotting the various resources
utilised as a function of the flit size = state size (denoted by s). since for a constant d up
to 24 the logic for ALC, TDT and TMD remains fixed hence the number of flip-flops and
slice registers instantiated from the slice for realising these Boolean network blocks
should remain fixed and this is listed in Table 1. Varying the s parameter of the buffering
policy requires more storage logic, i.e., RAM block and LUTs as a result the resource
usage in terms of LUTs, slices and SLICEM BRAM LUT’s is likely to go up. The results
are shown in Figure 9. Figure 9(a) illustrates the utilisation of slice LUTs and Figure 9(a)
illustrates the utilisation of occupied slices. The increased resource utilisation is listed in
Table 1. Since the proposed FIFO buffer is realised with the help of SLICEM BRAM
LUT’s, therefore in general for an n-bit state size of FIFO it requires n-memories and
n-dual port RAMs. The area comparison of our TD based implementation against FIFO
buffer implementation presented in the Khan and Ansari (2011) is mentioned in Table 2.
The work presents a FIFO design using flip-flop and memory cell design, proposed by
the authors. The authors have considered the direct Xilinx ISE based realisations of the

 220 L. Nazir and R.N. Mir

Buffer. Two sets of results have been reported giving details about the device utilisation
summary and timing parameters of the proposed design however, the power dissipation
of the proposed design is not reported. The devices considered are Vertex-7 device. We
implemented our realisation with the same target device and same package. The
performance parameters recorded PAR are mentioned in Table 1. It is observed that the
FIFO buffer based on the technology optimised mapping realisation of the network on
LUTs uses the underlying fabric efficiently hence relatively lesser FPGA resources are
consumed and results in lesser area delay product (ADP). The TD based realisation has
also proved to be efficient in terms of timing parameters as illustrated in Table 2. The
results of the work (Chelcea and Nowick, 2000) are also compared with the proposed
realisation. The authors have used BRAM Block configurable memory module that is
generated by the EDK design tools based on the configuration of the BRAM interface
controller IP. The resource utilisation summary is not completely mentioned. However,
the work has a poor clock speed as mentioned in Table 1.
Table 1 Resource utilisation for different FIFO buffer realisations with various state sizes

Device xc5vlx50t xc6vlx195t xc7vx485t
Package ff1136 2ff784 -
State size 23 24 25 26 27 23 24 25 26 27 23 24 25 26 27
Slice
registers

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Flip-flops
used as

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Slice
LUT’s

28 36 52 84 148 28 36 52 84 148 28 36 52 84 146

Occupied
slices

7 10 16 25 40 7 10 14 24 40 9 10 14 24 40

Fully used
LUT-FF
pairs

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

No. used as
memory

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Dual port
RAM

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Table 2 Resource utilisation for technology optimised vs. reported work

FIFO buffer design LUTs Flip-flops Slices Clock frequency (MHz) ADP
TD based 28 12 7 429 12012
Logic cell unit-based (Khan and
Ansari, 2011)

154 24 39 366 56364

RAMB_S8_S8 (Zhang et al.,
2011)

NA NA NA 100 NA

7.2 Timing analysis

Timing analysis attempts to capture the effect of interconnect on the delay within the
realised architecture. The interconnect delay varies with the logic block depth of Boolean

 An efficient realisation of FIFO buffers for NoC routers 221

networks. Technology optimised structures are implemented with minimum possible
depth, therefore, the critical path delays are quite low. Since clock frequency is also a
strong function of the propagation and routing delays associated with the critical path, a
minimum depth circuit also ensures higher operating frequencies. Table 3 provides a
comparison of the critical path delay and maximum clock frequency for the FIFO buffer
realisation based on the technology optimised mapping and the one based on the memory
cell based design. Further analysis is carried out by plot-ting the maximum clock
frequency as a function of s and target devices. The results are shown in Figure 10. We
can observe that the clock speed decreases with the increase in state size this is due to the
increase in the SLICEM BRAM LUT’s blocks that needs to be clocked simultaneously
for realisation of high s value FIFO buffers. As the BRAM LUT blocks used for this
purpose need a write clock for push operations therefore increasing FIFO memory size
affects the clock speed. More over the mapping constraints set by Xilinx ISE itself are not
part of an optimisation coding strategy hence this also impacts the timing closure while
optimising other parameters of interest thus affecting the clock speed of the FIFO buffer.
Tables 4 mentions the PAR values of the critical path delay recorded for the proposed
FIFO with various s values for the technology optimised realisation. The devices
considered are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6 and Virtex-7
respectively. The various state sizes taken are 23, 24, 25, 26 and 27. The depth of the
buffer is taken as 16.

The devices considered are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5,
Virtex-6 and Virtex-7 respectively. The various s values taken are 23, 24, 25, 26 and 27.
The depth of the buffer is taken as 16.
Table 3 Timing analyses for technology optimised and logic cell based FIFO

FIFO buffer design D, S Critical path (ns) Max. clock frequency (MHz) BW
Logic cell unit based Khan
and Ansari, 2011)

(16, 8) 2.73 366 2928

RAMB_S8_S8 (Zhang et al.,
2011)

(NA, 8) 10 100

TDM based [this work] (16, 8) 2.33 429 3432

Table 4 Critical path delay and maximum clock frequency for different sate sizes of buffers
realised on various devices

Device xc5vlx50t xc6vlx195t xc7vx485t
Max. clock frequency (MHz) 23-bit 347.58 265.11 429
Max. clock frequency (MHz) 24-bit 259.87 247.893 132.084
Max. clock frequency (MHz) 25-bit 200.441 335.345 94.411
Max. clock frequency (MHz) 26-bit 206.058 226.04 111.732
Max. clock frequency (MHz) 27-bit 178.66 193.461 85.07
Critical path delay (ns) 23-bit 2.877 3.772 2.33
Critical path delay (ns) 24-bit 3.848 4.034 8.843
Critical path delay (ns) 25-bit 4.989 2.982 10.59
Critical path delay (ns) 26-bit 4.853 4.424 8.95
Critical path delay (ns) 27-bit 5.597 5.169 11.755

 222 L. Nazir and R.N. Mir

Figure 10 Timing analyses for technology optimised FIFO realisations with different state sizes

8bit xc5vlx50t xc6vlx195t xc7vlx485t
0

100

200

300

400

500

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Device

 S -8
 S-16
 S-32
 S-64
 S-128

7.3 Power analysis

Power consumption has been one of the primary technical figure of merit for selecting an
FPGA for the performance of architecture targeted for FPGA platforms. The two primary
types of power consumption in FPGA are static (consumed due to transistor leakage) and
dynamic power consumed by toggling nodes as a function of voltage, frequency and node
capacitance that are switching. TD optimisation reduces the power dissipation in two
ways. First, the high activity switching nodes within a network are hidden within the
LUTs in the final circuit net list due to tight logic packing into LUTs. This reduces the
overall switching activity associated with the logic nodes. Second, TD optimisation
results in a minimal depth circuit with a high logic density. This reduces the length of
interconnects. Since interconnects in FPGAs are reconfigurable switches, there is a
further reduction in the switching activity and thus the power dissipated. The analysis is
done for a constant supply voltage and maximum operating frequency in each case. Test
benches were designed for worst-case switching activity and the buffer functionality was
verified for more than data flits. The design node activity from the simulator database
along with the power constraint file (PCF) was used for power analysis in the Xpower
analyser tool. Table 5 gives the detailed power dissipation for proposed FIFO structure
generated using technology optimised mapping. The values are recorded for target
devices Virtex-5, Virtex-6 and Virtex-7 against the s values 23, 24, 25, 26 and 27. The
dynamic power dissipation is a function of the toggling frequency of the nodes hence
with increase in the frequency the dynamic power dissipation should go up this is
accurately followed by our design as illustrated in Figure 11. Dynamic and I/O dominates
the total power consumption. The I/O buffers that charge and discharge the loads become
the main consumer of power. And with the increase in s value I/O power and dynamic
power is expected to go up. The trend is listed in Table 5 and is illustrated in Figure 12.
As the number of inputs, outputs and the respective signals also increase with s value,

 An efficient realisation of FIFO buffers for NoC routers 223

thus leading to the increased I/O’s and signal power. The growth of logic with the s value
leads to increased logic activity, thus increased switching activity, hence increased
dynamic power dissipation as illustrated in Table 5. In general, power dissipated by
on-chip resources is lesser for technology-optimised design because of the efficient
utilisation of the underlying resources. Finally, a reduction in switching activity due to
hiding of nodes and reduction of interconnects results in lower power dissipation in the
signals. Furthermore, the power dissipated in clocking resources varies with the clock
frequency. Since technology optimised design operates at slightly higher frequency in
general but operating frequency decreases with the increase in state size as explained
above, the power dissipated by clocking resources is expected also to decrease from
Figure 13. Since the power dissipation in the existing work is not reported therefore this
paper shows no comparison of the power dissipation with the existing designs or reported
work. Figure 13 give the relative comparison of the proposed TDM based FIFO
realisation with the existing cell unit based FIFO as illustrated in Khan and Ansari
(2011). Table 6 shows the comparison of TDM based realisation and micro pipeline
based realisation mentioned in Lee et al. (2011), it can be seen that the TDM based is
efficient than micro pipeline. The max frequency in micro pipeline seems to be more than
TDM based but since the micro pipeline based realisation has a s value of only four as
compared to TDM based that has s values of eight, hence for a s value of eight the max
frequency of the micro pipeline is expected to decrease and efficiency will further
decrease. The band-width of the NoC router is important in determining the latency
through the channels and area cost. In this paper, we assume w(ch) = S. Then the BW of
the NoC channel is given by

chBW f S= × (1)

where fch is the FIFO buffer operating frequency. Increasing in S reduces the
contention-free message latency. To remove the ambiguity, we have considered band
with BW of the design as a figure of merit for comparison. In terms of BW, the TDM
based realisation is more efficient. The BW supported by the TDM based realisation
against various s values is illustrated in Figure 14. As mentioned above high s value FIFO
will provide better BW but the area requirement will also grow affecting critical path
delay of the architecture at cost of more clock logic used. At the area-optimised and the
delay-optimised extremes, the trade-off between area and delay may become severely
unbalanced (Kuon and Rose, 2008). The area delay trade-off is illustrated in Figure 15.
Based on the suitable application from Figure 15, we can select a region of elasticity of
the buffer where the trade-off is arbitrary, i.e., neither too small nor too large. The region
for the TDM based for the target FPGAs is between 60 LUTs to 100 LUTs as illustrated
from the plot. Table 7 gives the possibility of realising efficient FIFO buffers based on
TD optimisations and compare it with the inherent FIFO (FIFO 18) resource present in
the FPGA device. FIFO 18 can support a state size up to 18-bits at most and the state size
of 25 is not supported (NS). As it can be seen that there are a limited number of FIFO
buffers in Xilinx FPGA devices and their number varies as the target device and package
varies. The proposed realisation helps in eliminating the barrier of having a fixed number
of buffers as shown in Table 7.

 224 L. Nazir and R.N. Mir

Table 5 Power dissipation for technology optimised FIFO buffers with variable state sizes

Po
w

er
 d

is
si

pa
tio

n
(m

W
)

FP
G

A
re

so
ur

ce

xc
5v

lx
50

t

xc
6v

lx
19

5t

xc

7v
x4

85
t

St
at

e
siz

e
23

24
25

26
27

23

24
25

26
27

23

24
25

26
27

C
lo

ck
s

6.
5

6.
89

8.

3
11

.5

29
.8

3

6.
14

6.

28

11
.0

1
19

.6
9

15
.2

3

1.
29

1.

34

1.
65

1.

92
1

2.
6

Lo
gi

c
0.

31

0.
54

0.

62

0.
77

0.

82

0.

14

0.
37

0.

52

0.
69

1.

17

0.

07

0.
08

0.

1
0.

11

0.
13

Si

gn
al

s
0.

71

2.
27

2.

85

5.
41

10

.9

0.

49

2.
89

3.

9
4.

51

6.
29

0.
43

0.

85

1.
44

1.

5
1.

96

IO
s

11
.8

15

.1
1

29
.0

3
36

.5
1

28

7.

37

17
.9

4
22

.1

26
.5

30

.7
3

8.

49

12
.5

4
16

.9

17
.7

22

.6
4

D
yn

am
ic

19

.3
2

24
.8

1
40

.8

54
.1

9
69

.5
5

14

.1
4

27
.4

8
37

.5
3

51
.3

9
53

.4
2

10

.2
8

14
.8

1
20

.0
9

21
.2

31

27
.3

3
Q

ui
es

ce
nt

56

0.
61

56

0.
61

56

0.
61

56

0.
61

56

0.
61

16
29

16

33

16
31

16

30

16
30

20
5.

7
20

5.
8

20
5.

7
20

5.
8

20
5.

8

 An efficient realisation of FIFO buffers for NoC routers 225

Table 6 Timing analyses for technology optimised and logic cell based FIFO

FIFO Buffer Design D, S Critical path (ns) Max. clock frequency (MHz) BW
Micropipeline based
(Lee et al., 2011)

(6, 4) 2.11 472 1888

TDM based (this work) (16, 8) 2.87 348 2784

Figure 11 Dynamic power dissipation vs. toggling frequency in different FPGAs against various
s values (see online version for colours)

50 100 150 200 250 300 350
10

20

30

40

50

60

70

Po
w

er
(m

W
)

Clock (MHz)

 S -8
 S-16
 S-32
 S-64
 S-128

Dynamic power XC5VLX50

50 100 150 200 250 300 350

10

20

30

40

50

60

70
Dynamic power XC6VLX195T

Po
w

er
 (m

W
)

Clock (MHz)

 S -8
 S-16
 S-32
 S-64
 S-128

(a) (b)

50 100 150 200 250 300 350 400 450
4

8

12

16

20

24

28

Po
w

er
 (m

W
)

Clock (MHz)

 S -8
 S-16
 S-32
 S-64
 S-128

Dynamic power XC7VLX485T

(c)

 226 L. Nazir and R.N. Mir

Table 7 Possible number of FIFO buffers than can be realised using technology optimised
mapping

Bu
ffe

ri
ng

 re
al

is
at

io
n

FP
G

A
Re

so
ur

ce

xc
5v

lx
50

t
xc

6v
lx

19
5t

xc

7v
x4

85
t

M
ax

im
um

m

em
or

y
LU

Ts

av
ai

la
bl

e
76

80

16
72

0

16
72

0
FI

FO
 B

uf
fe

r

St
at

e
siz

e
23

24
25

26
27

23

24
25

26
27

23

24
25

26
27

TD
M

 b
as

ed

N
um

be
r o

f
bu

ffe
rs

 p
os

sib
le

96

0
48

0
24

0
12

0
60

20
90

10

45

52
2

26
1

13
0

20

90

10
45

52

2
26

1
13

0

FI
FO

18

(X
ili

nx
 b

as
ed

)
N

um
be

r o
f

bu
ffe

rs
 P

re
se

nt

60

60

N
S

N
S

N
S

34

4
34

4
N

S
N

S
N

S

10
30

10

30

N
S

N
S

N
S

 An efficient realisation of FIFO buffers for NoC routers 227

Figure 12 I/O power of the FIFO targeted in different FPGAs against various s values

8bit xc5vlx50t xc6vlx195t xc7vlx485t
0

20

40
Po

w
er

 (m
W

)

Device

 S -8
 S-16
 S-32
 S-64
 S-128

IO Power

Figure 13 Comparison of TDM based realisation with cell unit based FIFO

cell unit based [43] TDM based [this work]
0

100

200

300

400

500

N
um

be
r o

f R
es

ou
rc

es

 LUT
 Flipflops
 Slices
 Clock frequency (MHz)

 228 L. Nazir and R.N. Mir

Figure 14 BW supported by the proposed technology optimised FIFO realisation with s values
and on different target devices.

27
80

.6
4

21
20

.8
8

34
3241
57

.9
2

39
66

.2
88

21
13

.3
4464

14
.1

12 10
73

1.
04

30
21

.1
52

13
18

7.
71

14
46

6.
56

71
50

.8
48

22
86

8.
48

24
76

3.
01

10
88

8.
96

8bit xc5vlx50t xc6vlx195t xc7vlx485t
0

5000

10000

15000

20000

25000

30000

35000

Ba
nd

w
id

th

Device

 S -8
 S-16
 S-32
 S-64
 S-128

Figure 15 Plot of area vs. delay for TDM based realisation

20 40 60 80 100 120 140 160
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Area (LUTS)

D
el

ay
 (n

s)

8 Conclusions

This paper presents a novel idea of sloving the buffering problems for the NoC routers
using technology dependent optimisations. The results presented in this work showed that
TD optimisations have a direct impact on area, delay and power dissipation of the design.
FIFO buffers capable of storing NoC traffic with various state sizes and a fixed depth
were implemented and it was shown that for a depth of buffers, the technology optimised
realisations will always have an improved performance in terms of various parameters
with reduction in the judicious trade-off between area, power and throughput parameters.

 An efficient realisation of FIFO buffers for NoC routers 229

A key feature of the TD optimisation is that the same optimisation results in the
improvement of all the performance parameters (area, speed and power). This is
generally not the case with technology independent optimisation where there is always an
application driven trade-off that drives the design process. However, performance
speedup through TD optimisation strongly relies on the amount of control the designer
has over the mapping process. In this paper, we tackled this issue by modifying the
coding strategy and writing instantiation based codes to map the behaviour of the
optimised Boolean networks. This has complicated the design entry and although an
efficient mapping is achieved, a complete control over the mapping process still remains
a bottleneck in TD optimisations. Another key contribution of this paper is that it has
eliminated the bottleneck of having a limited number of FIFO buffer instantiations
(limited number of FIFO resources) on FPGA platform which is a major bottleneck for
NoC designers to adopt FPGA platforms. The idea of this realisation of the buffer will
help NoC communication architecture design community to implement NoC based
systems easily on the reconfigurable platforms.

References
Abusaidi, P., Klein, M. and Philofsky, B. (2008) ‘Virtex-5 FPGA system power design

considerations’, Xilinx WP285 (v1. 0) 14 February.
Ahmaed, A.B., Abdallah, A.B. and Kuroda, K. (2010) ‘Architecture and design of efficient 3D

network-on-chip (3D NoC) for custom multicore SoC’, in International confrence on
Broadband, Wireless Computing, Communication and Application, November, FIT, Fukuoka,
Japan.

Anderson, J.H. and Wang, Q. (2011) ‘Area-efficient FPGA logic elements: architecture and
synthesis’, 16th Asia and South Pacific Design Automation Conference (ASP-DAC), January.

Anderson, T., Owicki, S., Saxe, J. and Thacker, C. (1993) ‘High speed switch scheduling for local
area networks’, ACM Trans. Compute. Syst., November, Vol. 11, No. 4, pp.319–352.

Benini, L. and Micheli, G.D. (2006) ‘Register designs for queuing buffer’, in Networks on Chips:
Technology and Tools, pp.65–66, Morgan Kaufmann Publishers, San Francisco.

Bertozzi, D. et al. (2005) ‘NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip’, Parallel and Distributed Systems, IEEE Transactions on, Vol. 16, No. 2,
pp.113–129.

Buyukkoc, C. (1986) ‘An approximation method for feed forward queueing networks with finite
buffers a manufacturing perspective’, in Robotics and Automation, Proceedings 1986 IEEE
International Conference, April, Vol. 3, No. 1, pp.965–972.

Chang, Y-Y. Huang, Y.S-C., Poremba, M., Narayanan, V., Yuan, X. and King, C. (2013) ‘Title
TS-router: on maximizing the quality-of-allocation in the on-chip network’, in IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA2013),
February, pp.390–399.

Chelcea, T. and Nowick, S.M. (2000) ‘A low-latency FIFO for mixed-clock systems’, Proceedings
IEEE Computer Society Workshop on VLSI 2000. System Design for a System-on-Chip Era,
pp.119–126, Orlando, FL.

Choi, Y. and Pinkston, T.M. (2004) ‘Evaluation of queue designs for true fully adaptive routers’, J.
Parall. Distrib. Comput., Vol. 64, No. 5, pp.606–616, Orlando, FL.

Dally, W.J. (1992) ‘Virtual-channel flow control’, in Parallel and Distributed Systems, IEEE
Transactions on, March, Vol.3, No.2, pp.194–205.

Dally, W.J. and Towels, B. (2003) Principles and Practices of Interconnection Networks, 1st ed.,
Morgan Kaufmann Publications, San Francisco, CA.

 230 L. Nazir and R.N. Mir

Deng, L., Sobti, K., Zhang, Y. and Chakarbarti, C. (2011) ‘Accurate area, time and power models
for FPGA based implementations’, Journal of Signal Processing Systems, Springer, Springer-
Verlag, Heidelberger Platz 3, 14197 Berlin, Germany.

Donghyun, K., Kwanho, K., Joo-Young, K., Seung-Jin, L. and Hoi-Jim, Y. (2007) ‘Solutions for
real chip implementation issues of NoC and their application to memory-centric NoC’, in First
International Symposium on Networks-on-Chip, May, pp.30–39, Princeton, New Jersey.

Forstner, P. (1999) FIFO Architecture, Functions, and Applications [online]
http://927www.ti.com/lit/an/scaa042a/scaa042a.pdf (accessed 2 April 2014).

Gharan, M.O. and Khan, G.N. (2012) ‘A novel virtual channel implementation technique for multi-
core on-chip communication’, in Applications for Multi-Core Architectures (WAMCA), 2012,
Third Workshop on, 24–25 October, pp.36–41.

Guo, J., Yao, J. and Bhuyan, L. (2005) ‘An efficient packet scheduling algorithm in network
processors’, in Proceedings of 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, March, pp.807–818.

Gupta, P. and Mckeown, N. (1999) ‘Designing and implementing a fast crossbar scheduler’, in
Proc. of Micro., IEEE, February, Vol. 19, No. 1, pp.20–28.

Homsirikamol, E., Rogawski, M. and Gaj, K. (2011) ‘Throughput vs. area trade-offs in high-speed
architectures of five round 3 SHA-3 candidates implemented using Xilinx and Altera FPGAs’,
International Workshop on Cryptographic Hardware and Embedded Systems, Springer, Berlin
Heidelberg.

Huang, P-T. and Hwang, W. (2006) ‘2-level FIFO architecture design for switch fabrics in
network-on-chip’, 2006 IEEE International Symposium on Circuits and Systems, p.4, p.4866,
Island of Kos.

Jantsch, A. and Tenhunen, H. (Eds.) (2003) Networks on Chip, Vol. 396, Kluwer Academic
Publishers, Dordrecht.

Jerger, N.E. and Peh, L-S. (2009) ‘On-chip networks’, Synthesis Lectures on Computer
Architecture, Vol. 4, No. 1, pp.1–141.

Karol, M. and Hluchyj, M. (1988) ‘Queueing in high-performance packet switching’, IEEE J.
Select. Areas Commun., December, Vol. 6, No. 9, pp.1587–1597.

Khan, M.A. and Ansari, A.Q. (2011) ‘n-Bit multiple read and write FIFO memory model for
network-on-chip’, 2011 World Congress on Information and Communication Technologies,
pp.1322–1327, Mumbai.

Kleinrock, L. (1975) ‘Theory’, Queueing Systems, Vol. 1, Wiley-Interscience, Radha offset, Delhi.
Kogan, K. et al. (2012) ‘FIFO queueing policies for packets with heterogeneous processing’,

Design and Analysis of Algorithms, pp.248–260, Springer, Berlin Heidelberg.
Krishnamoorthy, S. and Tessier, R. (2003) ‘Technology mapping algorithms for hybrid FPGAs

containing lookup tables and PLAs’, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22, No. 5, pp.545–559.

Kuon, I. and Rose, J. (2008) ‘Area and delay trade-offs in the circuit and architecture design of
FPGAs’, Proceedings of the 16th International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, pp.149–158, ACM, New York, NY, USA.

Lee, J-G. et al. (2011) ‘472MHz throughput asynchronous FIFO design on a Virtex-5 FPGA
device’, IEICE Electronics Express, Vol. 8, No. 9 pp.676–683.

Lee, K., Lee, S-J. and Yoo, H-J. (2003) ‘A distributed crossbar switch scheduler for on-chip
networks’, in Custom Integrated Circuits Conference, 2003, Proceedings of the IEEE,
September, pp.671–674.

Ling, A., Singh, D.P. and Brown, S.D. (2005) ‘FPGA technology mapping: a study of optimality’,
IEEE Proceedings Design Automation Conference, June, pp.427–432.

Liu, B.Q., Liu, M.Z., Yang, G., Mao, X.B. and Li, H.L. (2014) ‘Research and design of
asynchronous FIFO based on FPGA’, In Applied Mechanics and Materials, Vol. 644,
pp.3440–3444, Trans Tech Publications, Switzerland.

 An efficient realisation of FIFO buffers for NoC routers 231

Maher, A., Mohhamed, R. and Victor, G. (2013) ‘Evaluation of the scalability of round robin
arbiters for NoC routers on FPGA’, 7th International Symposium on Embedded
Multicore/Manycore System-on-Chip, pp.61–66.

Marculescu, R. et al. (2009) ‘Outstanding research problems in NoC design: system,
microarchitecture, and circuit perspec-tives’, Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, Vol. 28, No. 1, pp.3–21.

Mckeown, N. (1995) Scheduling Algorithms for Input Buffered Cell Switches, PhD thesis,
University of California, Berkeley.

McKeown, N., Anantharam, V. and Walrand, J.(1996) ‘Achieving 100% throughput in an input-
queued switch’, in Proc. IEEE INFOCOM ‘96, San Francisco, CA, pp. 296–302.

Mello, A. et al. (2005) ‘Virtual channels in networks on chip: implementation and evaluation on
hermes NoC’, Proceedings of the 18th Annual Symposium on Integrated Circuits and System
Design, ACM, ACM New York, NY, USA.

Michelogiannakis, G. and Dally, W.J. (2013) ‘Elastic buffer flow control for on-chip networks’, in
Computers, IEEE Transactions on, February, Vol.62, No.2, pp.295–309.

Ogras, U.Y., Hu, J. and Marculescu, R. (2005) ‘Key research problems in NoC design: a holistic
perspective’, Proceedings of the 3rd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ACM, Jersey City, NJ, USA, USA.

Osterloh, B., Michalik, H., Fiethe, B. and Kotarowski, K. (2008) ‘SoC wire: a network-on-chip
approach for reconfigurable sys-tem-on-chip designs in space applications,’ in Proceedings of
NASA/ESA Conference on Adaptive Hardware and Systems, June, pp.51–56.

Oveis-Gharan, M. and Khan, G.N. (2015) ‘Statically adaptive multi FIFO buffer architecture for
network on chip’, Microprocessors and Microsystems, Vol. 39, No. 1, pp.11–26.

Pande, P.P. et al. (2003) ‘High-throughput switch-based interconnect for future SoCs’, System-on-
Chip for Real-Time Applications, 2003, Proceedings, The 3rd IEEE International Workshop
on, IEEE, Calgary, Alberta, Canada.

Peh, L-S. and Dally, W.J. (2000) ‘Flit-reservation flow control’, Proceedings Sixth International
Symposium on High-Performance Computer Architecture, pp.73–84, HPCA-6 (Cat. No.
PR00550), Touluse.

Peh, L.S. and Dally, W.J. (2001) ‘A delay model and speculative architecture for pipelined routers’,
Proceedings HPCA Seventh International Symposium on High-Performance Computer
Architecture, pp.255–266, Monterrey.

Perros, H.G. and Altiok, T. (1986) ‘Approximate analysis of open networks of queues with
blocking: tandem configurations’, in Software Engineering, IEEE Transactions on, March,
Vol. SE-12, No. 3, pp.450–461.

Phanibhushana, B., Ganeshpure, K. and Kundu, S. (2011) ‘Task model for on-chip communication
infrastructure design for multi-core systems’, in Proc. of IEEE 29th International Conference
on Computer Design (ICCD), October, pp.360–365.

Saastamoinen, I., Alho, M. and Nurmi, J. (2003) ‘Buffer implementation for Proteo network-on-
chip’, Proceedings of the International Symposium on Circuits and Systems, Vol. 2,
pp.113–116, ISCAS, Bangkok.

Schelle, G. and Grunwald, D. (2006) ‘Onchip interconnect exploration for multicore processors
utilizing FPGAs’, In 2nd Workshop on Architecture Research using FPGA Platforms, 12th
February, pp.1–4, Austin.

Schelle, G. and Grunwald, D. (2008) ‘Exploring FPGA network on chip implementations across
various application and network loads’, 2008 International Conference on Field
Programmable Logic and Applications, pp.41–46, Heidelberg.

Serfozo, R. (2012) Introduction to Stochastic Networks, Vol. 44, Springer Science & Business
Media, Berlin.

So, K.C. and Chin K-T.E. (1992) ‘Performance bounds on multi server exponential tandem queues
with finite buffers’, European Journal of Operational Research, Vol. 63, No. 3, pp.463–477.

 232 L. Nazir and R.N. Mir

Sunderam, V.S. (1990) ‘PVM: a framework for parallel distributed computing’, Concurrency:
Practice and Experience, Vol. 2, No. 4, pp.315–339.

Virtex-5 (2012) FPGA User Guide UG190 (v5.4), 16 March [online] http://www.xilinx.com
[accessed 14June 2014].

Virtex-6 (2014) FPGA Memory Resources, User Guide, UG363 (v1.8), 5 February [online]
http://www.xilinx.com (accessed 14 June 2014).

Woods, R., McAllister, J., Lightbody, G. and Yi, Y. (2008) FPGA-based Implementation of Signal
Processing Systems, Wiley, Chichester, UK.

Xilinx (2009) Virtex-5 Family Overview, DS100 (v 5.0) 6 February [online] http://www.xilinx.com
(accessed 14 June 2014).

Xilinx (2010) Virtex-6 Libraries Guide for HDL Designs, UG623 (v 12.3) 21 September [online]
http://www.xilinx.com (accessed 25 June 2014).

Xilinx (2011) Spartan-6 Family Overview, DS160 (v 2.0) 25 October [online]
http://www.xilinx.com (accessed 7 July 2014).

Xilinx (2012) Virtex-6 FPGA Configurable Logic Block, UG364 (v1.2) 3 February.
Yoo, H.J., Lee, K. and Kim, J.K. (2008) ‘Network on chip based SoC’, in Low-Power NoC for

High-Performance SoC Design, pp.142–145, CRC Press, Boca Raton, ‘Thearchitechture of
the FIFO buffers is braoadly classified as serial and parallel’ [7–10].

Zhang, Y., Yi, C., Wang, J. and Zhang, J. (2011) ‘Asynchronous FIFO implementation using
FPGA’, Proceedings of 2011 International Conference on Electronics and Optoelectronics, ,
pp.V3-207–V3-209, Dalian.

