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Abstract: The communication between processing elements is facing 
challenges due to power, area and latency. The temporary flit storage blocks 
needed during communication contributes to the major power and area 
consumption in Network-on-Chip. Moreover, with modern FPGAs causing a 
rapid shift from prototype designing to low and medium volume productions, it 
becomes imperative to consider architectural optimisations that are specific to 
FPGA fabric only. This article attempts to provide novel optimised FIFO buffer 
realisation using technology dependent mapping strategies. This will help 
designers to adopt efficient design of NoC microarchitecture routers. The 
properties of proposed realisation are studied with a micro-architecture router 
for several packet flit rates given at an input port. The proposed realisation will 
help in the elimination of the presence of fixed inherent FIFO buffer 
instantiations as the proposed realisation gives us an idea to explore underlying 
FPGA fabric more efficiently for realisation of the FIFO than existing. 
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1 Introduction 

In the past few years, with the concept of network-on-chip (NoC) communication 
architecture, NoC has attracted a lot of attention by providing higher bandwidth (BW) 
and higher performance architectures for communication on the chip (Marculescu et al., 
2009). NoC can provide simple and scalable architectures if implemented on 
reconfigurable platforms (Osterloh et al., 2008). Network on chip offers a new 
communication paradigm for system on chip (SoC) design (Maher et al., 2013). Many 
processing elements of SoC are connected through NoC routers which are arranged in 
some regular fashion such as mesh, linear, torus, 2D, 3D type of topologies. To achieve 
high performance, the router should provide high BW and low latency (Ahmaed et al., 
2010). Although the performance of the NoC is normally seen by its throughput, which is 
defined by the network topology, router throughput and the traffic load on the network 
(Anderson et al., 1993). Therefore, the routers for a NoC must be designed to meet 
latency and throughput requirements amidst tight area and power constraints; this is a 
primary challenge designer are facing as many-core systems scale (So and Chin, 1992). 
As router complexity increases with BW demands, very simple routers (non-pipelined, 
wormhole, no virtual channels (VCs), limited buffering) can be built when high 
throughput is not needed, so require low area and power overhead (Buyukkoc, 1986; 
Kleinrock, 1975). Challenges arise when the latency and throughput demands on on-chip 
networks become increasingly high (Jerger and Peh, 2009). A router’s architecture 
determines its critical path delay which affects per-hop delay and overall network latency 
(Serfozo, 2012; Perros and Altiok, 1986). Router micro architecture also impacts network 
energy as it determines the circuit components in a router and their activity. The 
implementation of the routing, flow control and the actual router pipeline will affect the 
efficiency at which buffers and links are used and thus overall network throughput 
(Marculescu et al. 2009). The area footprint of the router is clearly determined by the 
chosen router micro architecture and underlying circuits. The critical path of the data path 
units in the router and the efficiency of control path units determine the router throughput 
(Karol and Hluchyj, 1988; McKeown et al., 1996; Chang et al., 2013; Phanibhushana, 
2011). The data paths of the on-chip router comprise of buffers, VC and switching fabric 
and the control paths of on-chip communication routers are largely composed of arbiters 
and allocators as illustrated in Figure 1 (Guo et al., 2005). Allocators are used to allocate 
VC and to perform matching between groups of resources on each cycle (Dally and 
Towels, 2013; Mckeown, 1995; Lee et al., 2003; Mello et al., 2015; Gharan and Khan, 
2012). Upon the flit arrival at the input port, contention for access to the fabric with cells 
at both input and output occurs. The router units exchange necessary handshake signals 
for data/flit transfer (Buyukkoc, 1986; Peh and Dally, 2000). A VC allocator thus 
performs allocation between the input flits and allows at most one flit contending at the 
input port to be destined to the selected output port (Gupta and Mckeown, 1999). In order 
to reduce the line of blocking, the rest of the contending flits are buffered into the VC or 
buffers of the router so as to service them in coming appropriate clock cycles (Dally, 
1992). Buffers have simple logic and functionality as compared to the control logic, but 
in networks they consume most of the area resources (Saastamoinen et al., 2013). 
However, the smaller the buffers are, the bigger is the possibility that some traffic is lost  
 
 
 



   

 

   

   
 

   

   

 

   

    An efficient realisation of FIFO buffers for NoC routers 203    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

during data flit transfer. As the buffering demands storage capacity, i.e., registers or 
memory, it rapidly increases area costs. Hence, the right sizing of the buffers is very 
important. For successful buffer design, as exact traffic characteristics as possible are also 
needed (Pande et al., 2003). However, elimination of input buffers eliminates the need of 
VCs besides causing the reduction in area and power (Michelogiannakis and Dally, 
2013). This increases the chances for head-of-line blocking and causes reduction of 
performance in a NoC based systems. On the other hand, NoC router architecture 
generally needs large amount of field programmable gate arrays (FPGA) resources 
(Schelle and Grunwald, 2006, 2009) which is the barrier to widespread adoption of NoC 
routers on FPGA platforms. Moreover, the limited number of in build block buffer 
instantiations available with a given platform increases the barrier to next higher level 
(Virtex-5, 2012; Virtex-6, 2014). Traditional implementations of FIFO buffering policy 
have been platform independence oriented, where the design process consists of 
developing the necessary high level code for application level with some thought given to 
the underlying architecture to optimise the code quality (Woods et al., 2008; Peh and 
Dally, 2001). However, the functional diversity and complexity can be exploited to reveal 
hidden parallelism helping us to formally capture concurrencies both within control logic 
models of computation and among multiple control logic models of general logic design 
(Bertozzi et al., 2005; Jantsch and Tenhunen, 2003). The high-level concurrent tasks can 
be then mapped to the underlying communication and computation resources (Sunderam, 
1990). This has provided designers with sufficient impetus to look for platform oriented 
solutions where the underlying hardware can be utilised to develop a block level solution 
that best matches the functional diversity and complexity in buffering policies by 
developing the right level of parallelism. Accordingly, attempts have been made to 
develop custom and reconfigurable architectures for realising various buffering policies 
in application specific integrated circuits (ASIC) and FPGA (Saastamoinen et al., 2003; 
Schelle and Grunwald, 2008; Oveis-Gharan and Khan, 2015; Kogan et al., 2012; Huang 
and Hwang, 2006; Chelcea and Nowick, 2000; Khan and Ansari, 2011; Zhang et al., 
2011). 

In this paper, we, therefore, propose a novel FPGA-based efficient realisation of 
FIFO buffer that will aid in the efficient implementation of NoC router micro 
architectures on LUT based reconfigurable platforms. We have adopted technology 
dependent (TD) optimisations based approach in this paper. The approach is implemented 
successfully on Xilinx’s Virtex-5, Virtex-6 and Virtex-7 FPGA devices. As the 
performance speed-up achieved using TD approach is a strong function of the nature of 
the target FPGA family. The optimisations presented in this work are targeted for FPGAs 
with 6-input LUTs. Therefore, for comparisons, we have considered only those 
implementations that use FPGAs with 6-input LUTs. From experimentation; it is 
observed that FPGA-based implementation with the TD approach results not only the 
consumption of lesser amount of resources in designing the buffering network but also 
gives the possibility of realising more number of FIFO buffers efficiently thus 
overcoming the barrier of having limited number of inherent FIFO buffers or block 
RAMs of FPGA device. The new realisation will help the NoC design community to 
explore of having NoC based systems with larger mesh order with better efficiency in 
terms of the specific application. 
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Figure 1 Block diagram of NoC router communication (see online version for colours) 

Router Switch NoC channel Router Switch

NoC channel

NoC channel

Last Flit in the channel, process of de-allocation of channel

First Flit in the channel, process of allocation of channel

Packet generator

Packet processor

 

The rest of the paper is organised as follows. Section 2 discusses the related work. 
Section 3 discusses general FIFO architecture. Section 4 discusses the FIFO realisation 
proposed in this paper. Section 5 discusses the preliminary terminology and the 
architectural details. Section 6 discusses the TD optimisation of the multiply-adder unit. 
Synthesis, implementation and discussions are carried out in Section 7. Conclusions are 
drawn in Section 8 and references are listed at the end. 

2 Related work 

Increased advances in the NoC based communication paradigm have attracted a lot of 
attention from industry and academia. Being a newer field, developing a newer a design 
methodology for NoC based communication presents novel and exciting challenges for 
the EDA community. With the large requirement of hardware resources some works had 
been reported in the ASIC domain, but to transfer the idea efficiently and entirely on 
reconfigurable platforms is yet a milestone to be achieved. NoC advances on 
reconfigurable platforms are limited by the availability of the limited amount of logic 
resources and memory on FPGAs (Schelle and Grunwald, 2008). Reconfigurable 
platforms fail to provide the amount of logic needed for the implementation of an 
efficient NoC system. Buffers are critical components of a NoC router and channel 
buffers at each router in the NoC have a serious impact on the over-all area (Ogras et al., 
2005). In NoC based architectures buffering policies play a key role in determining the 
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throughput, latency, area utilisation and energy consumption. In order to reduce the 
implementation overhead in NoC, Efforts are required to minimise the overall use of 
buffering resources. Hence, a considerable research effort has been devoted to buffering 
policies that can be adopted in NoC router micro architecture in the last few years. While 
these policies focus mainly on energy efficiency and latency, but they also increase the 
complexity of the router. Throughout, the key parameter of the NoC router needs to be 
maintained while reducing the complexity of router design. Sophisticated input-buffered 
routers have been proposed for extending throughput, latency and clock speed. For 
instance, high-speed design of a FIFO has been proposed for extending steady data 
transmission between asynchronous clock domains in work (Zhang et al., 2011). The 
authors have exploited the instantiation of complete inbuilt RAM block available in the 
Xilinx based reconfigurable platforms. This has certainly provided an efficient FIFO 
buffering architecture as the in-build cores or instantiations are highly efficient. However, 
because of limited blocks available, they are unable to suffice the demands of a NoC 
based number. The authors in work (Khan and Ansari, 2011) have presented a novel idea 
of realising a FIFO buffer by presenting a custom cell-based design. The proposed design 
is aimed to provide a reliable flow of flits with reduced the latency and channel blocking 
overheads in a network on chip based system. The design is better than earlier reported, 
but the authors of the work have not given thought to the TD optimisations in the work, 
as a result, the work inefficiently consumes large FPGA resources available with the 
reduction in the performance also. A similar work has been reported in Liu et al. (2014). 
The authors present a design method of asynchronous FIFO memory that primarily aims 
at buffer’s capacity to prevent spillovers despite the fullness of data. The work is 
inefficient no thought is being given to the underlying architecture of the FPGA platform. 
Some other articles that report the work mainly aimed at throughput and latency 
optimisation of router architecture, indirectly by buffer implementation, but logic 
resource utilisation had not been considered as a performance parameter include the work 
in Peh and Dally (2000), the authors proposes a flit-reservation flow control, which sends 
control flits ahead of data flits, and timestamps these control flits so that buffers can be 
allocated just-in-time when data flits arrive. However, this still relies on input buffers. 
The improvement of the congestion of incoming packets can be also checked by the VC 
scheme as presented in work (Mello et al., 2005; Gharan and Khan, 2012). VC scheme 
multiplexes a physical channel using VCs, leading to the reduction in latency and 
increase in network throughput. The insertion of VCs also enables to implement policies 
for allocating the physical channel BW, which enables support for quality of service 
(QoS) in applications (Saastamoinen et al., 2003). The authors in work (Lee et al., 2011) 
have presented low word length pipelined FIFO buffer. The proposed buffer is designed 
using the micro-pipeline protocol that is capable to provide relatively higher throughput. 
The higher throughput is achieved at the cost of the pipelined protocol which in turn 
requires high FPGA resource overhead hence resource inefficient. Moreover, this high 
throughput is also shown at smaller packet lengths, increasing the packet length or the 
state size beyond the considered size will definitely affect the throughput and the 
operating frequency. All the above-mentioned approaches use technology independent 
optimisations to enhance the performance of the NoC router. In this paper, we take an 
alternate approach and propose realisations that are based on TD optimisations. As 
already mentioned the performance speedup achieved using TD approach is a strong 
function of the nature of the target FPGA family. The optimisations presented in this 
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work are targeted for FPGAs with 6-input LUTs. Therefore, for comparisons, we have 
considered only those implementations that use FPGAs with 6-input LUTs. 

Figure 2 Block diagram of NoC router 
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3 FIFO queuing scheme 

An abstract FIFO provides a push and a pop interface and informs its connecting modules 
when it is full or empty. A push (write) is done when valid data are present at the input of 
the FIFO and the FIFO is not full. At the read side, a pop (read) occurs when the 
upstream channel is ready to receive new data and the FIFO is not empty, i.e., it has valid 
data to send. There are two types of FIFO designs and architectural schemes: serial and 
parallel (Benini and Micheli, 2006; Choi and Pinkston, 2004; Donghyun et al., 2007; Yoo 
et al., 2008; Forstner, 1999). The serial FIFO scheme such as shift registers the primitive 
FIFO generation that works by fall-through principle (or pipeline). However, with the 
advancement of architecture and circuit styling techniques the architectures of 
conventional FIFOs are constantly being improved. Currently, most of the FIFOs used 
are of parallel type, which are faster than serial FIFO (Ling et al., 2005). This type of 
buffering scheme finds wide application in network on chip due to its relation to the fall 
through concept where the new arrival flit is stored (pushed) at the tail location of FIFO, 
and with each shift request, flits are shifted one location (slot) toward the head of queue. 
The process of pushing data into the asynchronous FIFO is done by continuously 
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monitoring full and empty control signals from the FIFO buffer by the sender. The sender 
sets the request signal (push_req signal) after the data to he sent are ready. That data flits 
are on control basis continuously pushed into the consecutive buffer locations. The 
process of popping data from the asynchronous FIFO is equal to pushing process except 
that the data is supplied by the FIFO and obtained by the receiver. The control logic 
block contains control logic needed to control push pop operations on the actual memory 
block. 

Figure 3 Block diagram of proposed circular buffer (see online version for colours) 
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4 Proposed FIFO realisation 

We propose a novel FPGA based efficient realisation of FIFO buffer that will help in 
efficient implementation of NoC router micro architectures. The algorithmic 
interpretation of the proposed FIFO is presented in Algorithm 1. It describes the  
step-by-step procedure to perform the read write operations for each location of the FIFO 
memory. The target location for data flits to be stored temporarily is given by the loop 
index i that varies from 0 to R-1, where R is the depth of the FIFO. The flits to be read 
from the FIFO are represented by the loop index y. The algorithm is realised as a circular 
array of identical cells RAM LUTs from SLICEM present in the FPGA fabric. The block 
level illustration of the algorithm is shown in Figure 3. It mainly comprises of a pair of 
separate addressable controllers, each for writing (push) and pop operations. A separate 
full detector and empty detector logic block and control logic for the put operation and 
get operation. The full and empty detectors are required to observe the state of the FIFO 
and determine whether the FIFO is full or empty. The input and output behaviour of the 
FIFO is controlled by the flow of two tokens, generated by a write address logic 
controller logic and a read ad-dress logic controller respectively. A put token is used to 
enqueue data items and a get token is used to dequeue data items. Once a data item is 
enqueued, it is moved only when it is dequeued. If the signal to put token generator is 
asserted, the FIFO enqueues one data item and rotates the put token to the left. If it is  
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de-asserted, the put token is stalled with no enqueue operation in the FIFO. Similarly, the 
get controller enables and disables the get operations. Tokens move counter clockwise 
through the array of LUT-based RAM cells. The LUT RAM cell having the 
corresponding put token (tail of the queue) has permission to store the enqueued data 
item, and the cell having the corresponding get token (head of the queue) has the 
permission to dequeue its data to the neighbouring connecting node. The read address 
logic controller and the write address logic controller logic are designed in such a way 
that the get token is never ahead of the put token. After the token, has been consumed by 
the LUT-based RAM cell, it will be passed to its left neighbour at the beginning of the 
next clock cycle, after the respective operation is completed. The movement of tokens 
across the LUT RAM cells is controlled both by interface requests as well as the state of 
the FIFO (full or empty), which are combined into the global signals write and read. 
Algorithm 1 FIFO buffering algorithm 

 R = Number of rows of the FIFO 

 x ← 0; /* Memory write address*/ 

 y ← 0; /* Memory Read address*/ 

 Empty ← 1; 

 Full ← 0; 

 D = x – y; 

 While (en = 1) do 

  While (x ≤ R – 1 and Full != 1 and Wen = 1) do 

   Temp ← write(x); 

   x ← x + 1; 

  end while; 

 If (x = R) then 

   Full ← 0; 

 End if; 

  While(y ≤ R – 1 and D != 0 and Empty != 1 and Ren = 1) do 

   read(y) ← Temp; 

   y ← y + 1; 

  end while; 

 If (y = R – 1) then 

  Empty = 1; 

 End if; 
end while; 

 



   

 

   

   
 

   

   

 

   

    An efficient realisation of FIFO buffers for NoC routers 209    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5 Preliminary terminology and architectural details 

Logic synthesis FIFO buffer is concerned with realising a desired functionality with the 
minimum possible cost. In the con-text of digital design of a buffering policy, the cost of 
a circuit is a measure of its speed, area, power or any combination of these. The block 
level illustration shown in Figure 3 illustrates the broad architectural details. The primary 
blocks required to design the FIFO are the address logic controllers (ALC), token 
distance tracking (TDT), token magnitude detection (TMD), control signal generation 
blocks and a distributed RAM block (DRB). Distributed RAM is crucial to many  
high-performance applications that require relatively small embedded RAM blocks, such 
as FIFOs or small register files. The ALC are realised with the help of digital 
synchronous counter logic network. Two separate n-bit ALC are required for separate 
write and read operations of the FIFO into 2n RAM block location of each LUT-based 
RAM block. The separate use of address logic controller block is required for the 
separate address generation in respective ports. As we are targeting a ring FIFO buffer 
therefore a synchronous counter is required for the desired operation. The logic level 
diagram of an address logic controllers realised with help of fast carry4 chain present in 
the FPGA target device is shown in Figure 4(a). The logic controller shown is capable of 
providing an address realisation of FIFO with a depth order of 16 (24 = 16) with address 
bits A0, A1, A2, A3. These address bits are used for physical address realisation of the 
RAM blocks and are used by the TDT block. The TDT block is realised with the help of 
a ripple carry subtraction block illustrated in Figure 5. The TDT for the FIFO is also 
realised with the help of fast carry4 chain logic present in the target reconfigurable 
platform. The TDT block takes inputs from TMD block as illustrated in Figure 3. The 
logic network of a TMD is shown in Figure 4(b). TMD calculates the absolute distance 
between the tokens generated by ALC by providing a signal C_in_select input to the TDT 
block. TDT logic provides output to simple logic networks needed for both read and 
write ports and are called as the signal generation blocks. The signal generation blocks 
upon suitable receiving suitable inputs from TDT block generate empty and full signals 
that are needed for synchronisation of communication ports during the buffering of data 
into the actual storage cells or distributive RAM block. The distributive RAM block has 
been realised as 16 × 1 dual-port RAM16X1D primitive instantiation requiring two  
16 × 1 LUT RAMs present within a single SLICEM slice of the underlying fabric, as 
illustrated in Figure 6. Data is provided simultaneously to both LUT RAMs and 
controlled by address A[3:0], WE, and WCLK. The dual port RAM (DPR) has two 
access ports D and DPO as illustrated in Figure 6. For a general depth of n-bit FIFO 
realisation, each 16 × 1-bit RAM is cascaded for n-occurrences for deeper and/or wider 
memory applications in the form of an array of memory to store the data, with a minimal 
timing penalty incurred through specialised logic resources. Distributed RAM writes 
synchronously and reads asynchronously by two separate sets of control signal, address 
and data busses. However, if required by the application, use the register associated with 
each LUT to implement a synchronous read function. For dual-port RAM16X1D, the first  
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LUT out of two is required for the implementation of the A[3:0] port, i.e., the write and 
read address, and the second LUT is required to implement an independent read-only 
address, i.e., DPRA[3:0] port. The port A address buss is an address bus takes its address 
values from write ALC, data bus output from the memory is DPO. Port D is the actual 
data bus that provides data to be stored in data memory. The control signal blocks act as 
an arbitration circuit used to determine which port has the right to write the memory, 
when to read and when ports are trying to update the data in the same address at the same 
time. Such kind of RAM realisation is supported by various target devices such as 
Spartan-3 Virtex, Virtex-E, Spartan-II, Spartan-IIE, Virtex-II, and Virtex-II Pro FPGAs. 

Figure 4 Logic illustration of (a) ALC (b) TMD 
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Figure 5 Logic illustration of TDT block 
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Figure 6 Block level illustration of DRB 
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6 TD optimisations 

TD optimisations are used to transform the initial Boolean network into a circuit net list, 
efficiently compatible with the target logic elements. The transformation is carried out 
optimally in accordance with the logic distribution among the targeted elements so ensure 
minimum possible LUT depth and minimum resource utilisation of the target device. The 
target element in the majority of FPGAs is k-input LUT (Ling et al., 2005; Anderson and 
Wang, 2011). It is a block RAM function generator that can implement any Boolean  
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function of k variables by directly storing its truth table. State-of-art FPGAs support 6-
input, dual output LUTs with the capacity of implementing a single 6-input Boolean 
function or two 5-input Boolean functions that share inputs (Xilinx, 2009, 2010, 2011). 
An efficient utilisation of this circuit element could lead to implementation of higher 
logic densities resulting in a reduced fan-out of the logic nets and thus a minimal-depth 
circuit. 

TD optimisation using LUTs is carried out in two steps. Firstly, the entire digital 
network is partitioned into suitable sub-networks or blocks. Individual nodes within each 
sub-block are then covered with suitable cones that maps a local Boolean function or a 
local truth table onto a separate LUT. Secondly a reverse process of the above step is 
carried, i.e., the entire network is then reconstructed by assembling the individually 
optimised sub-networks. Since the circular buffer is an assembly of ALC, TDT, TMD 
and DRB. An optimised realisation of these individual sub networks could be adopted to 
realise an optimised realisation of a circular buffering policy. 

6.1 TD optimisation of ALC and TMD 

Figure 4 shows the Boolean network realisation of ALC block and TMD block 
respectively. The network is traversed beginning at the primary inputs and proceeding 
toward the primary outputs. At each node in the network a best circuit is constructed that 
implements the sub-network extending from the node to the primary inputs. Next, we try 
to find an optimal covering for the nodes within each sub-network. A straight forward 
approach would be to cover each node with a separate cone and then map the local 
function implemented by each cone onto a separate LUT as shown in figure. The overall 
depth at network output is there-fore, five and four respectively in each network. The 
LUT count is 21 and 20 respectively, the shaded blocks in the figure represents the LUTs 
consumed. Since we are targeting 6-input LUTs the implementation in Figure 4 leads to 
severe under-utilisation of the available resources in the considered network graphs. The 
number of required LUTs for realisation and the overall depth may be further reduced 
with the help of tree minimisation in the sub-networks. A further saving in resources is 
possible by exploiting the reconvergent PI nodes in the carry sub-network. A node in the 
network with a fan-out greater than one that terminates at other nodes within the same 
network is a source of reconvergent path. Reconvergent paths can be realised within the 
LUT and the total number of inputs is reduced. This is shown in the circuit of Figures 
8(a) and 8(b). The circuit, shown in Figure 8 is an optimised realisation of ALC and 
TMD using 6-input LUTs. The depth of the circuit is now reduced to one and the total 
LUT count is also reduced to three in the optimised realisation of ALC and the LUT 
depth count in realising TMD has been reduced to one and LUT utilisation is reduced to 
two. In order to ensure that the optimisation done prior to the design entry should not get 
over-ridden during the mapping and PAR phases. We have re-defined the coding strategy 
at the design entry phase. Instead of writing conventional inferential codes, we adopt an 
instantiation based coding strategy, wherein a target element is directly called and the 
desired functionality is assigned to it. This ensures a controlled mapping. 

The following instantiations were used to map various network circuits illustrated in 
Figure 8. 
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Code Instantiation: 1, instantiations used to map the TMD network 
 equalblock2: LUT6_2 generic map ( INIT => X”9009000022b20000”) port map (AlessB(1), 
AeqB(1), bin(3), ain(3), bin(2), ain(2),’1’,’1’); 
 equalblock1: LUT6_2 generic map ( INIT => X”9009000022b20000”) port map (AlessB(0), 
AeqB(0), bin(1), ain(1), bin(0), ain(0),’1’,’1’); 
 CARRY4_inst : CARRY4 port map (CO => cout1, O => dif1, CI => ‘0’, CYINIT => ‘0’, 
DI => AlessB, S => AeqB ); 

 
Code Instantiation: 2, instantiations used to map the ALC network 
 LUT2_L_inst0 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(0), q1rd(0), sr(0)); 
 LUT2_L_inst1 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(1), q1rd(1), sr(1)); 
 LUT2_L_inst2 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(2), q1rd(2), sr(2)); 
 LUT2_L_inst3 : LUT2_L generic map (INIT => X”2”) port map (Sinrd(3), q1rd(3), sr(3)); 
 CARRY4_inst_read : CARRY4 port map (COrd,Ord,’0’,’1’,DIrd,Sinrd); 
 FDSE_inst0 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(0), C => clk,CE =>  
Rd_ce,R => S, D => Ord(0)); 
 FDSE_inst1 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(1), C => clk,CE =>  
Rd_ce,R => S, D => Ord(1)); 
 FDSE_inst2 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(2), C => clk,CE =>  
 Rd_ce,R => S, D => Ord(2)); 
 FDSE_inst3 : FDRE generic map (INIT => ‘0’) port map (Q => q1rd(3), C => clk,CE =>  
Rd_ce,R => S, D => Ord(3)); 

 
Code Instantiation: 3, instantiations used to map the TDT block 
 LUT6_2_inst0 : LUT6_2 generic map ( INIT => X”ac00000099000000”) port map (p(0),  
g(0), bin(0), ain(0), cout1(1), ‘1’,’1’,’1’);  
 LUT6_2_inst1 : LUT6_2 generic map ( INIT => X”ac00000099000000”) port map (p(1), 
g(1), bin(1), ain(1), cout1(1), ‘1’,’1’,’1’); 
 LUT6_2_inst2 : LUT6_2 generic map ( INIT => X”ac00000099000000”) port map (p(2), 
g(2), bin(2), ain(2), cout1(1), ‘1’,’1’,’1’); 
 LUT6_2_inst3 : LUT6_2 generic map ( INIT => X”ac00000099000000”) port map (p(3), 
g(3), bin(3), ain(3), cout1(1), ‘1’,’1’,’1’);  
 CARRY4_inst_absolute_difference_circuit : CARRY4 port map (CO => cout2, O =>  
difference, CI => ‘1’,CYINIT => ‘1’, DI => g, S => p ); 

The Boolean network now has an LUT count of only three and a depth of only one LUT 
in case of ALC network. The complete efficient realisation of Boolean network is shown 
in the Figure 7(a). The LUT utilisation in realising the ALC network is reduced from  
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seventeen LUTs to three LUTs and the LUT depth count is reduced to one and one carry4 
chain. Similarly, the TD mapping of TMD network has resulted in a LUT count of two 
and LUT depth of one and one carry4 chain as shown in Figure 7(b). The mapping 
strategy is much efficient as compared to technology independent mapping as illustrated 
in Figure 4(b) where the TMD network has a LUT count of 22 and LUT depth of four 
LUTs. The high LUT depth would increase the critical path of the Boolean network 
hence limits the frequency besides using high amount of hardware resources. The code 
instantiation 3 is responsible for realisation of TD efficient mapping of TDT Boolean 
network using 6-input LUTs. The strategy is able to reduce the LUT count of TDT 
network from 52 LUTs to four LUTs and a reduction of LUT depth from six to one and a 
carry4 chain is obtained as illustrated in Figure 7(c). Thus, greatly reducing the 
propagation delay in the network through the LUT. This further helped in reduction of 
the critical path of the overall FIFO hence increasing the efficiency of the FIFO in terms 
of speed besides consuming less FPGA resources. 

FPGAs have a well-defined design flow that starts with design entry and proceeds 
through phases like synthesis, translation, mapping and place and route (PAR).It was 
mentioned in the introductory section that the design cycle in FPGAs is simple due to the 
availability of the computer aided design (CAD) tools that handle the majority of the TD 
steps like mapping and PAR. TD optimisations mainly focus on improving the mapping 
of Boolean networks onto target LUTs. However, with modern CAD tools, both 
technology mapping and PAR are automated and the optimisation process is not 
transparent to the user (Krishnamoorthy and Tessier, 2003). Thus any optimisation done 
prior to the design entry may get over-ridden during the mapping and PAR phases. To 
counter this issue we redefine the coding strategy at the design entry phase. Instead of 
writing conventional inferential codes, we adopt an instantiation based coding strategy, 
wherein a target element is directly called and the desired functionality is assigned to it. 
This ensures a controlled mapping. 
Figure 7 (a) Optimised utilisation of luts for realisation of Boolean network of (a) ALC (b) TMD 

(c) TDT using 6-input LUT (see online version for colours) 
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Figure 7 (a) Optimised utilisation of luts for realisation of Boolean network of (a) ALC (b) TMD 
(c) TDT using 6-input LUT (continued) (see online version for colours) 
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Figure 8 Dual-port DRB (16x1D) LUT realisation for single data bit (see online version  
for colours) 
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Figure 9 Resource utilisation for technology optimised for different state sizes 
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6.2 TD optimisation of RAM block 

In every topology of a NoC based communication network, there is an exchange of data 
flits between various IPs at a very rapid rate. Intermediate storage or buffering is always 
required when data arrive at routing nodes at a high rate or in batches, but are processed 
slowly or irregularly. Modern FPGAs provides a variety of slice elements to support 
logic, arithmetic, and ROM functions. In addition to this, FPGAs is equipped with some 
slices to provide additional functions such as storing data using distributed RAM and  
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shifting data with 32-bit registers. Slices that support these additional functions are called 
SLICEM. Such basic memory capabilities are embedded within the CLBs of various 
Xilinx FPGA families. Multiple LUTs in a SLICEM can be combined in various ways to 
store large amount of data. The function generators (LUTs) in SLICEMs can be 
implemented as an asynchronous RAM resource called a distributed RAM element. RAM 
elements are configurable within a SLICEM to implement various configurations of 
RAM: (Xilinx, 2012) Distributed RAM modules are synchronous (write) resources. A 
synchronous read can be implemented along with a storage element or a flip-flop in the 
same slice. The use of flip-flop for realising the distributed RAM, improves the 
performance by decreasing the delay into the clock required to operate the flip-flop. 
However, an additional clock latency is added. The distributed elements share the same 
clock input. For a write operation, the write enable (WE) input, driven by either the CE or 
WE pin of a SLICEM, must be set high. The memory structure of FIFO in this work is 
realised with the help 16 × 1 dual-port DRB (16X1D). The 16X1D primitive requires 
both 16 × 1 LUT RAMs within a single SLICEM slice, as shown in Figure 9. The first  
16 × 1 LUT RAM, with output on single-port RAM (SPO), implements the read/write 
port controlled by address A[3:0] to read and write. The second LUT RAM implements 
the independent read-only port controlled by dual port read only address (DPRA), i.e., 
DPRA[3:0]. Data is presented simultaneously to both LUT RAMs, again controlled by 
address A[3:0], WE, and WCLK. The entire RAM block is realised by cascading the 
DRBs n-time for desired n-bit state size. The instantiation shown in code instantiation: 
four is used to map the circuit in Figure 8(a). for bit-0 of the data flit. 

Code Instantiations: 4, Instantiation to map 1-bit Dual-port DRB 
RAM32X1D_inst_bit_0: RAM32X1D generic map (INIT => X”00000000”) – initial contents of 
RAM port map (DPO(0), SPO(0), WrAd(0), WrAd(1), WrAd(2), WrAd(3), WrAd(4), Din(0), 
Rdad(0), Rdad(1), Rdad(2), Rdad(3), Rdad(4),WCLK, wr_CE ); 

7 Synthesis, implementation and results 

The implementation in this work targets FPGAs that have 6-input LUTs as the basic logic 
element. In particular, we have considered devices from Virtex-5, Virtex-6 and Virtex-7 
FPGA families from Xilinx. The implementation is carried for different word lengths of 
the data flits needed to be stored. The parameters considered are area, timing and power 
dissipation. The area is measured in terms of LUTs, flip-flops and slices utilised. Timing 
analysis may be static or dynamic. Static timing analysis gives information about the 
Minimum period and operating frequency of the design. Static timing analysis is done 
post synthesis and post PAR. However, the metrics obtained after synthesis are often not 
accurate enough due to the programmability of the FPGA which allows for interconnect 
delays to change significantly between iterations. Therefore, the metrics presented in this 
paper are post PAR. Dynamic timing analysis verifies the functionality of the design by 
applying test vectors and checking for correct out-put vectors. An important result from 
the dynamic timing analysis is the switching activity information captured in the value 
charge dump (VCD) file. Apart from post PAR timing analysis the functionality of the 
design is also verified by dumping the design on the Virtex-5, Virtex-7 platform. Power 
dissipation is given by the sum of static power dissipation and dynamic power 
dissipation. Static power dissipation is device specific and is mainly determined by the 
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specific FPGA family. Dynamic power dissipation is related to the charging and 
discharging of capacitances along different logic nodes and interconnects. Dynamic 
power dissipation mainly consists of the logic power, clock power and signal power 
(Deng et al., 2011). Logic power depends on the amount of on-chip resources being 
utilised by the design. Clock power is proportional to the operating frequency. Signal 
power depends on the switching activity and the density of the interconnects. For 
simulation and metrics generation similar test benches have been used and are typically 
designed to represent the worst-case scenario (in terms of switching activity) for data 
entering into the FIFO buffer. Design entry is done using VHDL. As mentioned earlier 
instantiation based coding strategy is used. The constraints relating to synthesis and 
implementation are duly provided and a complete timing closure is ensured. Synthesis 
and implementation is carried out in Xilinx ISE 12.1 (http://www.xilinx.com). Power 
analysis is done using the Xpower analyser tool. 

There has been no work regarding the implementation of FIFO buffering policies 
using the TD optimisations. Since such optimisations are a strong function of the type 
and nature of the underlying fabric, we have considered some technology independent 
FIFO buffer realisations that utilise the same FPGA devices. The idea is to provide a 
comparative analysis of the performance speed up that is achievable using the TD 
approaches. However, our initial comparisons focus on the performance improvement 
achieved over the buffer realisations based on programmable logic unit cells 
implemented in (Khan and Ansari, 2011) and micro-pipeline-based implemented in Lee 
et al., 2011 that are targeted for Xilinx FPGAs. 

7.1 Area analysis 

Area refers to the embedded resource utilisation, the resource utilisation in FPGA is a 
vector, with coordinates specific to the given FPGA family. The resource utilisation is an 
important measure predicting design or algorithm flexibility (Homsirikamol et al., 2011). 
Table 1 provides a comparison of the different FPGA resources utilised by the realisation 
of the proposed TD based FIFO buffering policy based on the technology optimised sub 
blocks. The depth of FIFO buffer (denoted by d) is 16 and the flit order is varied as 23, 
24, 25, 26 and 27. Target devices are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, 
Virtex-6 and Virtex-7. Further analysis is carried out by plotting the various resources 
utilised as a function of the flit size = state size (denoted by s). since for a constant d up 
to 24 the logic for ALC, TDT and TMD remains fixed hence the number of flip-flops and 
slice registers instantiated from the slice for realising these Boolean network blocks 
should remain fixed and this is listed in Table 1. Varying the s parameter of the buffering 
policy requires more storage logic, i.e., RAM block and LUTs as a result the resource 
usage in terms of LUTs, slices and SLICEM BRAM LUT’s is likely to go up. The results 
are shown in Figure 9. Figure 9(a) illustrates the utilisation of slice LUTs and Figure 9(a) 
illustrates the utilisation of occupied slices. The increased resource utilisation is listed in 
Table 1. Since the proposed FIFO buffer is realised with the help of SLICEM BRAM 
LUT’s, therefore in general for an n-bit state size of FIFO it requires n-memories and  
n-dual port RAMs. The area comparison of our TD based implementation against FIFO 
buffer implementation presented in the Khan and Ansari (2011) is mentioned in Table 2. 
The work presents a FIFO design using flip-flop and memory cell design, proposed by 
the authors. The authors have considered the direct Xilinx ISE based realisations of the 
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Buffer. Two sets of results have been reported giving details about the device utilisation 
summary and timing parameters of the proposed design however, the power dissipation 
of the proposed design is not reported. The devices considered are Vertex-7 device. We 
implemented our realisation with the same target device and same package. The 
performance parameters recorded PAR are mentioned in Table 1. It is observed that the 
FIFO buffer based on the technology optimised mapping realisation of the network on 
LUTs uses the underlying fabric efficiently hence relatively lesser FPGA resources are 
consumed and results in lesser area delay product (ADP). The TD based realisation has 
also proved to be efficient in terms of timing parameters as illustrated in Table 2. The 
results of the work (Chelcea and Nowick, 2000) are also compared with the proposed 
realisation. The authors have used BRAM Block configurable memory module that is 
generated by the EDK design tools based on the configuration of the BRAM interface 
controller IP. The resource utilisation summary is not completely mentioned. However, 
the work has a poor clock speed as mentioned in Table 1. 
Table 1 Resource utilisation for different FIFO buffer realisations with various state sizes 

Device xc5vlx50t  xc6vlx195t  xc7vx485t 
Package ff1136 2ff784 - 
State size 23 24 25 26 27  23 24 25 26 27  23 24 25 26 27 
Slice 
registers 

12 12 12 12 12  12 12 12 12 12  12 12 12 12 12 

Flip-flops 
used as 

12 12 12 12 12  12 12 12 12 12  12 12 12 12 12 

Slice 
LUT’s 

28 36 52 84 148  28 36 52 84 148  28 36 52 84 146 

Occupied 
slices 

7 10 16 25 40  7 10 14 24 40  9 10 14 24 40 

Fully used 
LUT-FF 
pairs 

12 12 12 12 12  12 12 12 12 12  12 12 12 12 12 

No. used as 
memory 

8 16 32 64 128  8 16 32 64 128  8 16 32 64 128 

Dual port 
RAM 

8 16 32 64 128  8 16 32 64 128  8 16 32 64 128 

Table 2 Resource utilisation for technology optimised vs. reported work 

FIFO buffer design LUTs Flip-flops Slices Clock frequency (MHz) ADP 
TD based 28 12 7 429 12012 
Logic cell unit-based (Khan and 
Ansari, 2011) 

154 24 39 366 56364 

RAMB_S8_S8 (Zhang et al., 
2011) 

NA NA NA 100 NA 

7.2 Timing analysis 

Timing analysis attempts to capture the effect of interconnect on the delay within the 
realised architecture. The interconnect delay varies with the logic block depth of Boolean 
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networks. Technology optimised structures are implemented with minimum possible 
depth, therefore, the critical path delays are quite low. Since clock frequency is also a 
strong function of the propagation and routing delays associated with the critical path, a 
minimum depth circuit also ensures higher operating frequencies. Table 3 provides a 
comparison of the critical path delay and maximum clock frequency for the FIFO buffer 
realisation based on the technology optimised mapping and the one based on the memory 
cell based design. Further analysis is carried out by plot-ting the maximum clock 
frequency as a function of s and target devices. The results are shown in Figure 10. We 
can observe that the clock speed decreases with the increase in state size this is due to the 
increase in the SLICEM BRAM LUT’s blocks that needs to be clocked simultaneously 
for realisation of high s value FIFO buffers. As the BRAM LUT blocks used for this 
purpose need a write clock for push operations therefore increasing FIFO memory size 
affects the clock speed. More over the mapping constraints set by Xilinx ISE itself are not 
part of an optimisation coding strategy hence this also impacts the timing closure while 
optimising other parameters of interest thus affecting the clock speed of the FIFO buffer. 
Tables 4 mentions the PAR values of the critical path delay recorded for the proposed 
FIFO with various s values for the technology optimised realisation. The devices 
considered are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, Virtex-6 and Virtex-7 
respectively. The various state sizes taken are 23, 24, 25, 26 and 27. The depth of the 
buffer is taken as 16. 

The devices considered are xc5vlx50, xc6vlx195t and xc7vx485t from Virtex-5, 
Virtex-6 and Virtex-7 respectively. The various s values taken are 23, 24, 25, 26 and 27. 
The depth of the buffer is taken as 16. 
Table 3 Timing analyses for technology optimised and logic cell based FIFO 

FIFO buffer design D, S Critical path (ns) Max. clock frequency (MHz) BW 
Logic cell unit based Khan 
and Ansari, 2011) 

(16, 8) 2.73 366 2928 

RAMB_S8_S8 (Zhang et al., 
2011) 

(NA, 8) 10 100  

TDM based [this work] (16, 8) 2.33 429 3432 

Table 4 Critical path delay and maximum clock frequency for different sate sizes of buffers 
realised on various devices 

Device xc5vlx50t xc6vlx195t xc7vx485t 
Max. clock frequency (MHz) 23-bit 347.58 265.11 429 
Max. clock frequency (MHz) 24-bit 259.87 247.893 132.084 
Max. clock frequency (MHz) 25-bit 200.441 335.345 94.411 
Max. clock frequency (MHz) 26-bit 206.058 226.04 111.732 
Max. clock frequency (MHz) 27-bit 178.66 193.461 85.07 
Critical path delay (ns) 23-bit 2.877 3.772 2.33 
Critical path delay (ns) 24-bit 3.848 4.034 8.843 
Critical path delay (ns) 25-bit 4.989 2.982 10.59 
Critical path delay (ns) 26-bit 4.853 4.424 8.95 
Critical path delay (ns) 27-bit 5.597 5.169 11.755 
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Figure 10 Timing analyses for technology optimised FIFO realisations with different state sizes 
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7.3 Power analysis 

Power consumption has been one of the primary technical figure of merit for selecting an 
FPGA for the performance of architecture targeted for FPGA platforms. The two primary 
types of power consumption in FPGA are static (consumed due to transistor leakage) and 
dynamic power consumed by toggling nodes as a function of voltage, frequency and node 
capacitance that are switching. TD optimisation reduces the power dissipation in two 
ways. First, the high activity switching nodes within a network are hidden within the 
LUTs in the final circuit net list due to tight logic packing into LUTs. This reduces the 
overall switching activity associated with the logic nodes. Second, TD optimisation 
results in a minimal depth circuit with a high logic density. This reduces the length of 
interconnects. Since interconnects in FPGAs are reconfigurable switches, there is a 
further reduction in the switching activity and thus the power dissipated. The analysis is 
done for a constant supply voltage and maximum operating frequency in each case. Test 
benches were designed for worst-case switching activity and the buffer functionality was 
verified for more than data flits. The design node activity from the simulator database 
along with the power constraint file (PCF) was used for power analysis in the Xpower 
analyser tool. Table 5 gives the detailed power dissipation for proposed FIFO structure 
generated using technology optimised mapping. The values are recorded for target 
devices Virtex-5, Virtex-6 and Virtex-7 against the s values 23, 24, 25, 26 and 27. The 
dynamic power dissipation is a function of the toggling frequency of the nodes hence 
with increase in the frequency the dynamic power dissipation should go up this is 
accurately followed by our design as illustrated in Figure 11. Dynamic and I/O dominates 
the total power consumption. The I/O buffers that charge and discharge the loads become 
the main consumer of power. And with the increase in s value I/O power and dynamic 
power is expected to go up. The trend is listed in Table 5 and is illustrated in Figure 12. 
As the number of inputs, outputs and the respective signals also increase with s value,  
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thus leading to the increased I/O’s and signal power. The growth of logic with the s value 
leads to increased logic activity, thus increased switching activity, hence increased 
dynamic power dissipation as illustrated in Table 5. In general, power dissipated by  
on-chip resources is lesser for technology-optimised design because of the efficient 
utilisation of the underlying resources. Finally, a reduction in switching activity due to 
hiding of nodes and reduction of interconnects results in lower power dissipation in the 
signals. Furthermore, the power dissipated in clocking resources varies with the clock 
frequency. Since technology optimised design operates at slightly higher frequency in 
general but operating frequency decreases with the increase in state size as explained 
above, the power dissipated by clocking resources is expected also to decrease from 
Figure 13. Since the power dissipation in the existing work is not reported therefore this 
paper shows no comparison of the power dissipation with the existing designs or reported 
work. Figure 13 give the relative comparison of the proposed TDM based FIFO 
realisation with the existing cell unit based FIFO as illustrated in Khan and Ansari 
(2011). Table 6 shows the comparison of TDM based realisation and micro pipeline 
based realisation mentioned in Lee et al. (2011), it can be seen that the TDM based is 
efficient than micro pipeline. The max frequency in micro pipeline seems to be more than 
TDM based but since the micro pipeline based realisation has a s value of only four as 
compared to TDM based that has s values of eight, hence for a s value of eight the max 
frequency of the micro pipeline is expected to decrease and efficiency will further 
decrease. The band-width of the NoC router is important in determining the latency 
through the channels and area cost. In this paper, we assume w(ch) = S. Then the BW of 
the NoC channel is given by 

chBW f S= ×  (1) 

where fch is the FIFO buffer operating frequency. Increasing in S reduces the  
contention-free message latency. To remove the ambiguity, we have considered band 
with BW of the design as a figure of merit for comparison. In terms of BW, the TDM 
based realisation is more efficient. The BW supported by the TDM based realisation 
against various s values is illustrated in Figure 14. As mentioned above high s value FIFO 
will provide better BW but the area requirement will also grow affecting critical path 
delay of the architecture at cost of more clock logic used. At the area-optimised and the 
delay-optimised extremes, the trade-off between area and delay may become severely 
unbalanced (Kuon and Rose, 2008). The area delay trade-off is illustrated in Figure 15. 
Based on the suitable application from Figure 15, we can select a region of elasticity of 
the buffer where the trade-off is arbitrary, i.e., neither too small nor too large. The region 
for the TDM based for the target FPGAs is between 60 LUTs to 100 LUTs as illustrated 
from the plot. Table 7 gives the possibility of realising efficient FIFO buffers based on 
TD optimisations and compare it with the inherent FIFO (FIFO 18) resource present in 
the FPGA device. FIFO 18 can support a state size up to 18-bits at most and the state size 
of 25 is not supported (NS). As it can be seen that there are a limited number of FIFO 
buffers in Xilinx FPGA devices and their number varies as the target device and package 
varies. The proposed realisation helps in eliminating the barrier of having a fixed number 
of buffers as shown in Table 7. 
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Table 5 Power dissipation for technology optimised FIFO buffers with variable state sizes 
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Table 6 Timing analyses for technology optimised and logic cell based FIFO 

FIFO Buffer Design D, S Critical path (ns) Max. clock frequency (MHz) BW 
Micropipeline based 
(Lee et al., 2011) 

(6, 4) 2.11 472 1888 

TDM based (this work) (16, 8) 2.87 348 2784 

Figure 11 Dynamic power dissipation vs. toggling frequency in different FPGAs against various 
s values (see online version for colours) 
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Table 7 Possible number of FIFO buffers than can be realised using technology optimised 
mapping 
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Figure 12 I/O power of the FIFO targeted in different FPGAs against various s values 
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Figure 13 Comparison of TDM based realisation with cell unit based FIFO 
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Figure 14 BW supported by the proposed technology optimised FIFO realisation with s values 
and on different target devices. 
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Figure 15 Plot of area vs. delay for TDM based realisation 
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8 Conclusions 

This paper presents a novel idea of sloving the buffering problems for the NoC routers 
using technology dependent optimisations. The results presented in this work showed that 
TD optimisations have a direct impact on area, delay and power dissipation of the design. 
FIFO buffers capable of storing NoC traffic with various state sizes and a fixed depth 
were implemented and it was shown that for a depth of buffers, the technology optimised 
realisations will always have an improved performance in terms of various parameters 
with reduction in the judicious trade-off between area, power and throughput parameters. 
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A key feature of the TD optimisation is that the same optimisation results in the 
improvement of all the performance parameters (area, speed and power). This is 
generally not the case with technology independent optimisation where there is always an 
application driven trade-off that drives the design process. However, performance 
speedup through TD optimisation strongly relies on the amount of control the designer 
has over the mapping process. In this paper, we tackled this issue by modifying the 
coding strategy and writing instantiation based codes to map the behaviour of the 
optimised Boolean networks. This has complicated the design entry and although an 
efficient mapping is achieved, a complete control over the mapping process still remains 
a bottleneck in TD optimisations. Another key contribution of this paper is that it has 
eliminated the bottleneck of having a limited number of FIFO buffer instantiations 
(limited number of FIFO resources) on FPGA platform which is a major bottleneck for 
NoC designers to adopt FPGA platforms. The idea of this realisation of the buffer will 
help NoC communication architecture design community to implement NoC based 
systems easily on the reconfigurable platforms. 
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