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Abstract 
Current work reports modelling and simulation of geometric and material nonlinearities arising due 
large elasto-plastic displacements in structural specimens by invoking enriched element free Galerkin 
method (EFGM). The displacement approximations are constructed by using moving least square 
approach. Standard displacement based approximations are modified by incorporating suitable 
enrichment functions depending on the nature of interfaces present in the components. Large 
deformations give rise to geometric nonlinearities which have been modelled by invoking total 
Lagrangian approach in which the initial unloaded state is chosen as the reference state for 
investigation. One of the main advantages of total Lagrangian approach lies in the selection of 
reference configuration which remains same throughout the simulation. Elastic-predictor-plastic-
corrector algorithm has been used for the estimation of stresses during simulation. Mathematical 
foundations on EFGM are programmed in MATLAB to solve different engineering problems. Finally, 
various nonlinear problems are reported to establish the potential of enriched EFGM in modelling 
geometric and material nonlinearities in bi-material structural components. The results obtained in the 
current work are compared with finite element and coupled FE-EFG solutions so that the potential and 
accuracy of the proposed approach are established. 
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INTRODUCTION 

In the past several decades, extensive studies and research have been conducted to investigate 
geometric and material nonlinearities that may occur in structural components having different types of 
internal interfaces in the domain. These discontinuities may arise due to cracks, holes or bi-material 
surfaces, as shown in Figure. 1. Several computational approaches have been proposed from time to 
time to simulate different engineering problems, which include boundary element methodology (BEM) 
[1-3], finite element method (FEM) [4], meshless techniques [5–8] and extended FEM (XFEM) [9,10]. 
Although FEM provides the most efficient and powerful computational technique for investigating 

different solid mechanics problems but it faces 
several problems while investigating different 
types of internal interfaces, because of the 
requirement of FEM mesh to conform to the 
orientation of the interfaces. Creating a conformal 
finite element mesh for irregularly shaped 
geometrical interfaces has always created problems 
in computational mechanics. The requirement of 
mesh conformation, mesh refinements and 
remeshing makes conventional finite element 
method more demanding and expensive as 
compared to XFEM. FEM also experiences 
extreme mesh distortion while modelling large 
deformation problems that involve geometric 
nonlinearities in the domain of interest. 
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Geometrically nonlinear large deformation problems are handled more efficiently by meshless 
techniques such as EFGM. All mesh related issues are eliminated in EFGM which makes it a novel 
computational tool for modelling large or significant elasto-plastic deformations occurring in the 
domain.  
 

XFEM was developed as the extended version of conventional FEM, which provided an efficient 
computational tool for modelling the material interfaces present in the structural components like holes, 
cracks or bi-material interfaces. This technique does not require conformal meshing to model these 
geometrical discontinuities. The discontinuities are investigated by enriching conventional EFGM 
approximations with suitable enrichment functions [11]. Various problems involving the modelling of 
discontinuities have been solved by XFEM, which include quasi-static crack growth in structural 
components [12], cohesive crack growth in engineering materials [13-15], cyclic crack growth [16-18], 
propagating and non-propagating cracks [19] and 3D crack growth [20,21], crack nucleation and multi-
crack cases [22–25], holes and inclusions [26, 27], problems involving bi-material discontinuities [28–

33], frictional contact between solid bodies [34–37], time dependent crack growth [38-42] and nonlinear 
crack growth cases [43–45]. This method was also successfully invoked to model several problems in 
the areas of fluid dynamics [46-51], problems involving phase changes [52–54], piezoelectric cases [55] 
and other complex mechanical components [56,57]. 
 

 
Figure 1. Domain with different types of discontinuities 
 

The current work provides an efficient and accurate numerical technique, based on enriched EFGM, 
to investigate geometrical and material nonlinearities in bi-material structural components. Several 
specimens containing internal interfaces have been discussed in the current work. Large deformations 
have been modelled by the total Lagrangian approach which considers initial unloaded state as the 
reference state for investigation. Deformation gradient tensor has been used to map the data between 
different configurations during large deformation. Mathematical foundations on EFGM are 
programmed in MATLAB to investigate several engineering problems. Finally, various numerical 
problems are reported to establish the potential of enriched EFGM in modelling geometrical and 
material nonlinearities in bi-material structural components. 
 
FUNDAMENTALS OF ENRICHED EFGM 

EFGM was proposed with the goal of eliminating the limitations related to the dependence of FE 
mesh to construct the approximate solution. In all meshless techniques, the structural component is 
represented by an array of nodes and displacement approximation is derived from the knowledge of 
these nodes only. Generation of finite element mesh is not required in meshless techniques. Smooth 
particle hydrodynamics (SPH) was among the first meshfree methods that was developed to model 
various astrophysical phenomena including dust clouds and exploding stars. This technique was later 
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applied to investigate different solid mechanics problems. Conventional smooth particle hydrodynamics 
method suffered various limitations while modelling solid mechanics problems like instabilities, 
inconsistencies, due to which modifications were carried out so that this technique becomes suitable for 
computational solid mechanics. SPH technique and its updated versions were based on strong form of 
mathematical model. On the contrary, EFGM was developed considering the weak form of original 
mathematical models. All the mesh related problems are eliminated in EFGM, which proves to be very 
useful for solving large deformation problems where mesh distortions are predominant, and the 
conventional finite element method suffers serious drawbacks in those cases. While modelling such 
problems by the FEM, severe mesh distortions occur which makes further analysis difficult and 
remeshing is required. However, these problems do not arise in meshless techniques. The performance 
of all meshless techniques is seriously influenced by selection of weight functions, which have a 
compact support that defines the domain of influence of the concerned nodes.  
 
Approximation Function in EFGM 

As already explained, EFGM constructs the displacement approximations with the help of nodal 
distributions only. Moving least square (MLS) based displacement approximants are used for describing 
the displacements. Such approximations include a polynomial basis, weight function and coefficients 
dependent on position of node. The MLS approximation for primary variable 𝑢ℎ(𝑥) can be written as 

 

𝑢ℎ(𝑥) = ∑ p𝑗(𝑥
𝑛

𝑗=1
)a𝑗(𝑥) = P𝑇(𝑥)a(𝑥)       (1) 

 
where, 𝑛 denotes nodes in neighbourhood of point 𝑥 where weight function is not equal to zero, p𝑗(𝑥) 

represents polynomial basis, a𝑗(𝑥) are coefficients dependent on the position of node. The polynomial 
basis functions for different cases can be defined as 
 
P𝑇(𝑥) = [1, 𝑥]                            𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑜𝑛𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙     (2) 
P𝑇(𝑥) = [1, 𝑥, 𝑦]                      𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑡𝑤𝑜 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙     (3) 
P𝑇(𝑥) = [1, 𝑥, 𝑦, 𝑥2, 𝑦2, 𝑥𝑦]  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 − 𝑡𝑤𝑜 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙    (4) 
P𝑇(𝑥) = [1, 𝑥, 𝑦, 𝑥2, 𝑦2, 𝑥𝑦, 𝑥3, 𝑦3, 𝑥2𝑦, 𝑥𝑦2]    𝑐𝑢𝑏𝑖𝑐 − 𝑡𝑤𝑜 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  (5) 
 

Coefficients a(𝑥) are derived by minimizing the weighted least square sum 𝐿(𝑥) of the error between 
𝑢ℎ   and nodal parameter 𝑢𝑖, which is written as 

 

𝐿(𝑥) = ∑ 𝑤𝑗(𝑥
𝑛

𝑗=1
)[P𝑇(𝑥)a(𝑥) − 𝑢𝑖]

2       (6) 

 
𝐿(𝑥) is minimized as 

∂𝐿(𝑥)

∂a(𝑥)
= 0           (7) 

 
After carrying out the above differentiation, we reach at 

A(𝑥)a(𝑥) = B(𝑥)u         (8) 
 
Where 
u𝑇 = [𝑢1,  𝑢2, 𝑢3, ……………… . 𝑢𝑛]        (9) 

A(𝑥) = ∑ 𝑤𝑗(𝑥
𝑛

𝑗=1
)P(𝑥𝑗)P

𝑇(𝑥𝑗)        (10) 

B(𝑥) = [𝑤1(𝑥)P(𝑥1),   𝑤2(𝑥)P(𝑥2),……… ,𝑤𝑛(𝑥)P(𝑥𝑛)]     (11) 
 

Coefficients a(𝑥) are derived as a(𝑥)  =  A−1(𝑥)B(𝑥)u. Now, 𝑢(𝑥) is written as 
𝑢ℎ(𝑥) = P𝑇(𝑥)A−1(𝑥)B(𝑥)u         (12) 
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which further gives 
𝑢ℎ(𝑥) = ∑ N𝑖(𝑥)𝑢𝑖

𝑛
𝑖=1 = N𝑇(𝑥)𝑢         (13) 

 
where N𝑖 are the MLS shape functions described as 

Ψ𝑖 = P𝑇(𝑥)A−1(𝑥)B(𝑥)         (14) 
 

The derivatives of MLS shape functions are written as  
N𝑖,𝑥 = (P𝑇(𝑥)A−1(𝑥)B(𝑥))

,𝑥
= (P𝑇),𝑥A

−1B + P𝑇(A−1),𝑥B + P𝑇A−1B,𝑥  (15)  

 
where 
B,𝑥 = 𝑤𝑖,𝑥P(𝑥𝑖)          (16) 
(A−1),𝑥 = −A−1A,𝑥A

−1          (17) 
A,𝑥 = ∑ 𝑤𝑖,𝑥

𝑛
𝑗=1 P(𝑥𝑗)P

𝑇(𝑥𝑗)         (18) 
 
Choice of Weight Function 

Proper selection of weight functions is the most significant feature of meshfree techniques. The 
weight functions should have a positive value inside their domain and must decrease monotically with 
increasing distance from the node. Several categories of weight functions have been proposed for 
EFGM, out of which the important ones include the exponential, cubic and quartic spline form of weight 
functions. The most commonly used form of weight function in EFGM is the quartic spline. Some of 
the weight functions are given below 

 
(1) Cubic spline  

𝑤(𝑟) = {

2

3
− 4𝑟2 + 4𝑟3 ,                    𝑟 ≤

1

2
4

3
− 4𝑟 + 4𝑟2 −

4

3
𝑟3  ,    

1

2
< 𝑟 ≤ 1

0            ,                                 𝑟 > 1     

      (19) 

(2) Quartic spline  

𝑤(𝑟) = {
1 − 6𝑟2 + 8𝑟3 − 3𝑟4    ,        𝑟 ≤ 1
0                            ,                    𝑟 > 1

      (20) 

 
where 

𝑟 =
‖𝑥𝐼−𝑥‖

𝑑𝐼
           (21) 

 
Here, 𝑥𝐼 represents the node and 𝑑𝐼 is its domain of influence. In two dimensional problems, circular 

and rectangular supports have found extensive applications. The size of compact support plays a crucial 
role in the behaviour of meshfree methods. Dolbow and Belytschko defined the size of compact support 
as 𝑑𝐼 = 𝑑𝑚𝑎𝑥𝑐𝐼, where 𝑐𝐼 is chosen in such a way that good number of nodes are available in the support 
and the value of 𝑑𝑚𝑎𝑥 lies between 2.0 and 4.0. 
 
MODELLING OF BI-MATERIAL INTERFACES BY EFGM 

The bi-material discontinuity produces a displacement field that remains continuous across the 
interface, but it produces a discontinuity in strain field. Such discontinuities are investigated by 
choosing two enrichment functions. One of the enrichment functions is described as 
 
F(x) = |∑ ϕiNi(x)

⬚
i |                             (22) 

 
where  ϕ represents the level set function. Another function is expressed as 

F(x) = ∑ |ϕi|Ni(x) −⬚
i |∑ ϕiNi(x)

⬚
i |                     (23) 
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The modified EFGM approximation is written as 
uh(x) = ∑ Ni(x)ui + ∑ Ni(x)

ns
i=1 [F(x) − F(xi)]ai

n
i=1               (24)  

 
The final EFGM model is derived after the substitution of variable approximation in the equilibrium 

equation, which gives [Ke]{de} = {f e}, where  
 

[Ke] = [
Kuu Kua

Kau Kaa]   ;    {f
e} = {fu  f a}T  ;   {de} = {u   a}T            (25) 

Krs = ∫ (Br)TDBsdΩ
⬚

Ωe        where r, s = u, a                       (26) 

fu = ∫ NTb dΩ +
⬚

Ωe ∫ NTt dΓ
⬚

Γe                               (27) 

f a = ∫ NT(F(x) − F(xi))b dΩ +
⬚

Ωe ∫ NT(F(x) − F(xi))t dΓ
⬚

Γe                 (28) 

Bu = [

Ni,x 0

0 Ni,y

Ni,y Ni,x

]   ;     Ba = [

(Ni(F(x) − F(xi))),x 0

0 (Ni(F(x) − F(xi))),y

(Ni(F(x) − F(xi))),y (Ni(F(x) − F(xi))),x

]            (29) 

 
Modelling of Large Deformation by EFGM 

The current work employs the total Lagrangian approach to investigate the geometric nonlinearity 
caused by large deformation. The equilibrium equation for modelling geometric nonlinearities is written 
as  

 

∫ δFT⬚

Ω
PdΩ − ∫ δuTb

⬚

Ω
dΩ − ∫ δuTt

⬚

Γt
dΓt = 0                     (30) 

where F denotes deformation gradient tensor defined as Fij =
∂xi

∂Xj
=

∂ui

∂Xj
+ δij, b denotes body force 

vector, P represents first Piola-Kirchoff stresses, t is applied traction vector, x = [x y]T denotes 
deformed configuration of the given body and X = [X Y]T denotes the unloaded state of the body. We 
generally use second Piola-Kirchoff stress S, which can be obtained as P = SFT.  
 

Substitution of EFGM based displacement approximation in the equilibrium equation yields the 
EFGM model as 

[
Kuu Kua

Kau Kaa] {
u
a
} = {

fu

f a}           (31) 

 
where 

Kαβ = ∫ (Bα)TDep⬚

Ωe BβdΩ + ∫ (Gα)TMs
⬚

Ωe GβdΩ           (α, β = u, a)           (32) 

fu = ∫ NTb̅ dΩ +
⬚

Ωe ∫ NTt̅dΓ
⬚

Γe         (33) 

f a = ∫ NT(F(X) − F(Xi))b̅ dΩ +
⬚

Ωe ∫ NT(F(X) − F(Xi))t̅ dΓ
⬚

Γe             (34) 

Ms = [

SXX 0
0 SXX

SXY 0
0 SXY

SXY 0
0 SXY

SYY 0
0 SYY

]           (35) 

Bu = [

Ni,X 0

0 Ni,Y

Ni,Y Ni,X

]     ;     Ba = [

(Ni(F(X) − F(Xi))),X 0

0 (Ni(F(X) − F(Xi))),Y

(Ni(F(X) − F(Xi))),Y (Ni(F(X) − F(Xi))),X

]  (36)  

Gu =

[
 
 
 
Ni,X 0

0 Ni,X

Ni,Y 0

0 Ni,Y]
 
 
 

    ;   Ga =

[
 
 
 
 
(Ni(F(X) − F(Xi))),X 0

0 (Ni(F(X) − F(Xi))),X

(Ni(F(X) − F(Xi))),Y 0

0 (Ni(F(X) − F(Xi))),Y]
 
 
 
 

           (37) 
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In the above equations, Dep is the elasto-plastic constitutive matrix, b̅ and t̅  are defined as b̅ =
b

J
  and 

t̅ = t(
da

dA0
). J represents the determinant of the deformation gradient matrix, da denotes the deformed 

elemental area and dA0 represents the original undeformed area. b and t represent body forces and 
surface tractions applied on the deformed configuration, respectively. 
 
NUMERICAL RESULTS AND DISCUSSIONS 

Few numerical problems are reported here to illustrate the applicability of EFGM in solving large-
plasticity deformations in structural components. The first example reports the die pressing 
phenomenon in a bi-material specimen with horizontal interface between two materials. The second 
example investigates the die pressing phenomenon in a bi-material specimen with two horizontal 
interfaces, separating the harder material and the soft portion. These two cases are investigated by 
enriched EFGM and the results obtained during simulation are compared with FEM and coupled 
solutions, which are considered as the reference solution for validation. In both problems, the Young’s 

modulus of weak portion is assumed as 2.1 × 108 N/m2 with a Poisson ratio of 0.35. The von-Mises 
yield criterion has been used and yield stress of  2.4 × 105 N/m2 has been assumed. The hardening 
parameter of 3 × 107 N/m2 is considered for analysis. The stronger portion is elastic and has the 
Young’s modulus of 2.1 × 109 N/m2 with the Poisson ratio of 0.35.  
 
Die Pressing of a Bi-Material Rectangular Object 

Large deformation has been investigated in a rectangular component with one internal bi-material 
interface, as depicted in Figure 2. The given specimen is fixed at the top surface, and the lower edge is 
compressed to have 12 mm height reduction. The EFGM mesh of 26 × 41 nodes is chosen for the 
given domain, as can be seen in Figure. 3. Final deformed state for the given compaction is presented 
in Figure 4. Figure 5 shows the distribution of normal stress σyy along the common interface. The 
normal stress σyy along the vertical left edge can be seen in Figure. 6. Results derived in the current 
work show a close agreement with conventional FEM and coupled solutions available in literature and 
hence it is established that the presented approach can be effectively and efficiently used to study and 
investigate the problems involving geometric and material nonlinearities. 

 

 
Figure 2. Rectangular component containing a horizontal interface 
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Figure 3. EFGM domain representation for one horizontal interface inside the domain 
 

 
Figure 4. Deformed configuration obtained by EFGM. 
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Figure 5. Normal stress 𝜎𝑦𝑦 along the common interface 
 

 
Figure 6. Normal stress 𝜎𝑦𝑦 along the left vertical edge 
 
Die pressing of a rectangular component between two hard dies 

This example reports large deformation in a rectangular component with two internal bi-material 
interfaces, as can be seen in Figure. 7. Top edge of the component is restrained while a compaction is 

10 15 20 25 30 35 40 45 50 55 60
-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

Left Edge (mm)

N
or

m
al

 S
tr

es
s 

(M
P

a)

 

 
XFEM

EFGM

Coupled FE-EFG



 
Journal of Polymer & Composites 
Volume 12, Special Issue 2 
ISSN: 2321-2810 (Online), ISSN: 2321-8525 (Print) 
 

© STM Journals 2024. All Rights Reserved S138  
 

applied at the lower edge equal to 7.5 mm height reduction. Nodal array of 26 × 41 nodes is selected 
for the analysis, as depicted in Figure 8. Deformed configuration for the given compaction is presented 
in Figure 9. Figure. 10 shows the normal stress σyy along the common interface. Figure 11 presents the 
normal stress σyy across top edge of the component. Results derived in the current work show a close 
agreement with conventional FEM and coupled solutions available in literature and hence it is 
established that the presented approach can be effectively and efficiently used to study and investigate 
the problems involving geometric and material nonlinearities. 

 

 
Figure 7. Rectangular component with two horizontal interfaces in the domain 
 

 
Figure 8. EFGM domain representation for a rectangular component with two horizontal interfaces 
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Figure 9. Deformed configuration obtained by EFGM. 
 

 
Figure 10. Normal stress 𝜎𝑦𝑦 along the common interface 
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Figure 11. Normal stress 𝜎𝑦𝑦 along the top surface 
 
CONCLUSIONS 

In the current work, enriched EFGM is invoked to model geometric and material nonlinearities in 
structural components containing internal interfaces. The conventional moving least square 
approximation is modified with suitable enrichment functions to model the influence created by various 
types of internal interfaces present in structural components. Results derived in the current work show 
a close agreement with conventional FEM and coupled solutions available in literature and hence it is 
established that the presented approach can be effectively and efficiently used to study and investigate 
the problems involving geometric and material nonlinearities. 
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