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ON FRAMELET KERNELS OF M-BAND WAVELET FRAMES

FIRDOUS AHMAD SHAH1∗ AND MOHAMMAD YOUNUS BHAT2

Abstract. Framelets and their promising features in applications have at-
tracted a great deal of interest and effort in recent years especially in signal
denoising, image compression, and numerical algorithms. In this note, we
introduce reproducing kernel Hilbert spaces and associated kernels that are
explicitly constructed by the elements of M -band framelet system.

1. Introduction

It is well known that the standard orthogonal wavelets are not also suitable for the
analysis of high-frequency signals with relatively narrow bandwidth. To overcome
this shortcoming, M -band orthonormal wavelets were created as a direct general-
ization of the 2-band wavelets [12]. The motivation for a larger M(M > 2) comes
from the fact that, unlike the standard wavelet decomposition which results in a
logarithmic frequency resolution, the M -band decomposition generates a mixture
of logarithmic and linear frequency resolution and hence generates a more flexible
tiling of the time-frequency plane than that resulting from 2-band wavelet. The
other significant difference between 2-band wavelets and M -band wavelets in con-
struction lies in the aspect that the wavelet vectors are not uniquely determined
by the scaling vector and the orthonormal bases do not consist of dilated and
shifted functions through a single wavelet, but consist of ones by using M − 1
wavelets (see [1, 4, 7, 11]). It is this point that brings more freedoms for optimal
wavelet bases.

However, the tight wavelet frames are different from the orthonormal wavelets
because of redundancy. By sacrificing orthonormality and allowing redundancy,
the tight wavelet frames become much easier to construct than the orthonormal
wavelets. A catalyst for this development is the unitary extension principle (UEP)
introduced by Ron and Shen [10], which provides a general construction of tight
wavelet frames for L2(Rn) in the shift-invariant setting, and included the pyra-
midal decomposition and reconstruction filter bank algorithms. The resulting
tight wavelet frames are based on a multiresolution analysis, and the generators
are often called mother framelets. The theory of tight wavelet frames has been
extensively studied and well developed over the recent years. To mention only a
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few references on tight wavelet frames, the reader is referred to [2, 3, 5, 8] and
many references therein. In the M -band setting, Han and Cheng [6] have pro-
vided the general construction of M -band tight wavelet frames on R by following
the procedure of Daubechies et al.[3] and Petukhov [8] via extension principles.
They have presented a systematic algorithm for constructing tight wavelet frames
generated by a given refinable function with dilation factor M ≥ 2.

This paper is organized as follows. In Section 2, we review some basic facts
about M -band tight wavelet frames using extension principles. In Section 3,
we prove the main result of this note regarding the construction of reproducing
kernels associated with the M -band framelet systems.

2. Definitions and Preliminarary Results

We begin this section by reviewing some major concepts concerning M -band
wavelet frames. In the rest of this paper,, we use N,N0,Z and R to denote the
sets of all natural numbers, non-negative integers, integers and real numbers,
respectively. The symbol IM denotes the identity matrix of size M > 2.

The Fourier transform of a function f ∈ L1(R) is defined as usual by:

f̂(ξ) =

∫
R
f(x) e−iξxdx, ξ ∈ R

and its inverse is

f(x) =
1

2π

∫
R
f̂(ξ) eiξxdξ, x ∈ R.

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R), define the M -band wavelet system

X(Ψ) :=
{
ψ`j,k : 1 ≤ ` ≤ L; j, k ∈ Z

}
(2.1)

where ψ`j,k = M j/2ψ`(M j. − k). The wavelet system X(Ψ) is called a M-band
wavelet frame, or simply a wavelet frame, if there exist positive numbers 0 < A ≤
B <∞ such that for all f ∈ L2(R).

A
∥∥f∥∥2

2
≤

L∑
`=1

∑
j∈Z

∑
k∈Z

∣∣〈f, ψ`j,k〉∣∣2 ≤ B
∥∥f∥∥2

2
. (2.2)

The largest constant A and the smallest constant B satisfying (2.2) are called the
lower and upper wavelet frame bounds, respectively. A wavelet frame is a tight
wavelet frame if A and B are chosen so that A = B and then the generators
ψ1, ψ2 . . . , ψL are often referred as M-band framelets. Furthermore, the wavelet
frame is called a Parseval wavelet frame if A = B = 1, and in this case, every
function f ∈ L2(R) can be written as
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f(x) =
L∑
`=1

∑
j∈Z

∑
k∈Z

〈
f, ψ`j,k

〉
ψ`j,k(x). (2.3)

The construction of framelet systems often starts with the construction of
MRA, which is built on refinable functions. A function ϕ ∈ L2(R) is called
M -refinable if it satisfies a refinement equation:

ϕ(x) =
∑
k∈Z

h0[k]ϕ(Mx− k). (2.4)

for some h0 ∈ l2(Z). The Fourier transform of (2.4) yields

ϕ̂ (ξ) = m0

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (2.5)

where

m0(ξ) =
1

M

∑
k∈Z

h0[k]eikξ,

is a 2π-periodic measurable function in L∞[−π, π] and is often called the refine-
ment symbol of ϕ. We further assume that:

lim
ξ→0

ϕ̂(ξ) = 1, and
∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 ∈ L∞[−π, π]. (2.6)

For a compactly supported refinable function ϕ ∈ L2(R), let V0 be the closed
shift invariant space generated by {ϕ(.− k) : k ∈ Z} and Vj = {ϕ(M j.) : ϕ ∈ V0} ,
j ∈ Z. It is known that when ϕ is compactly supported, then {Vj}j∈Z forms a

multiresolution analysis (see [3] ). Recall that a multiresolution analysis is a
family of closed subspaces {Vj}j∈Z of L2(R) that satisfies: (i) Vj ⊂ Vj+1, j ∈ Z,
(ii)

⋃
j∈ZVj is dense in L2(R) and (iii)

⋂
j∈ZVj = {0} (see [1, 11]). Let Ψ :=

{ψ1, . . . , ψL} ⊂ V1, then

ψ̂` (ξ) = m`

(
ξ

M

)
ϕ̂

(
ξ

M

)
, (2.7)

where

m`(ξ) =
1

M

∑
k∈Z

h`[k]eikξ, ` = 1, . . . , L

are the 2π-periodic measurable functions in L∞[−π, π] and are called the framelet
symbols. The so-called unitary extension principle (UEP) provides a sufficient
condition on Ψ such that the resulting M -band system X(Ψ) forms a tight frame
of L2(R). Han and Cheng in [6] gave a complete characterization of the M -band



62 FIRDOUS AHMAD SHAH1∗ AND MOHAMMAD YOUNUS BHAT2

tight wavelet frames via the unitary extension principle. The following is the
fundamental tool they gave to construct M -band tight wavelet frames.

Theorem 2.1. Suppose that the refinable function ϕ and the framelet symbols
m0,m1, . . . ,mL satisfy (2.4)-(2.7). Define ψ1, . . . , ψL by (2.7). Let M(ξ) ={
m`

(
ξ + 2πp

M

)}M−1
`,p=0

such that M(ξ)M∗(ξ) = IM , for a.e ξ ∈ σ(V0) :={
ξ ∈ [−π, π] :

∑
k∈Z |ϕ̂(ξ + 2kπ)|2 6= 0

}
, then M-band wavelet system X(Ψ) forms

a tight wavelet frame for L2(R) with frame bound 1.

3. Framelet Kernels Associated with M-band Wavelet Frames

In this section, we build reproducing kernel Hilbert spaces and associated kernels
that are explicitly constructed by the elements of M -band framelet system. These
M -band framelets are chosen in some scale ranges and are used as the basis of
the feature space. Thus, one can combine the advantages of multiscale framelet
representation with the merit of kernel methods.

Let jmin and jmax be the minimum and maximal scale indices. Then, for this
choice of scale j, we consider a family of functions

F :=
{
ψ`j,k : jmin ≤ j ≤ jmax, k ∈ Z, 1 ≤ ` ≤ L

}
. (3.1)

Clearly, the above restricted scale range system F belongs to the M -band wavelet
system X(Ψ) given by (2.1). Next, we define a set of functions H by

H =

{
f : f =

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

h`j,k ψ
`
j,k

}
.

For any f, g ∈ H, the scale product in H is defined by

〈
f, g
〉
H =

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f, ψ`j,k

〉〈
g, ψ̃`j,k

〉
, (3.2)

where

F̃ :=
{
ψ̃`j,k : jmin ≤ j ≤ jmax, k ∈ Z, 1 ≤ ` ≤ L

}
. (3.3)

is the dual M -band wavelet frame of the system (3.1).

Theorem 3.1. Suppose the M-band wavelet system X(Ψ) given by (2.1) is a
normalized tight wavelet frame for L2(R) generated by the UEP associated with the
compactly supported M-refinable function ϕ. Then,

(
H, 〈· , ·〉H

)
is a reproducing

kernel Hilbert space and its reproducing kernel is
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K(x, y) =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

ψ`j,k(x)ψ`j,k(y). (3.4)

Proof. We split the proof of the theorem in the following three steps:

Step 1. SinceH is a closed subspace of the Hilbert space L2(Ω), where Ω is a com-
pact dense subset of R. Hence, it follows that H is also a Hilbert space with the
same scale product 〈·, ·〉H in L2(Ω). Moreover, it is proved in [9] that if a function
space is spanned by a finite set of functions, then the function set is a frame for
that space. Therefore, by using this result and the fact that M -band framelets
are compactly supported, it follows that the restricted scale range system F given
by (3.1) has a finite number of functions and hence, constitutes a frame for the
space H. Similarly, the dual wavelet system given by (3.3) constitutes a frame
for H. Thus, for any f ∈ H, we have

f =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f, ψ`j,k

〉
ψ̃`j,k =

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f, ψ̃`j,k

〉
ψ`j,k, (3.5)

and there exists positive numbers A and B satisfying

A
∥∥f∥∥2

2
≤

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

∣∣〈f, ψ`j,k〉∣∣2 ≤ B
∥∥f∥∥2

2

or equivalently

1

B

∥∥f∥∥2
2
≤

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

∣∣∣〈f, ψ̃`j,k〉∣∣∣2 ≤ 1

A

∥∥f∥∥2
2
. (3.6)

Step 2. We now prove that the scale product 〈· , ·〉H defined by (3.2) is valid in
H. To do so, let f, g, h ∈ H and α, β ∈ R, then we have the following:

(i) 〈f, g〉H =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f, ψ̃`j,k

〉〈
g, ψ̃`j,k

〉
= 〈g, f〉H.

(ii) 〈αf + βg, h〉H =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
αf + βg, ψ̃`j,k

〉〈
h, ψ̃`j,k

〉
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=
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

[
α
〈
f, ψ̃`j,k

〉
+ β

〈
g, ψ̃`j,k

〉]〈
h, ψ̃`j,k

〉

= α
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f, ψ̃`j,k

〉〈
h, ψ̃`j,k

〉
+ β

L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
g, ψ̃`j,k

〉〈
h, ψ̃`j,k

〉
= α 〈f, h〉H + β 〈g, h〉H .

(iii) Since

〈f, f〉H =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

∣∣∣〈f, ψ̃`j,k〉∣∣∣2 ≥ 0.

Therefore, equation (3.6) can be written as

1

B

∥∥f∥∥2
2
≤ 〈f, f〉H ≤

1

A

∥∥f∥∥2
2
,

which implies that

〈f, f〉H = 0 if and only if f = 0.

Thus, we have proven that
(
H, 〈· , ·〉

)
is a Hilbert space.

Step 3. Finally, we shall prove that H is a reproducing kernel Hilbert space
with reproducing kernel given by (3.4). Since the restricted scale system given by
(3.1) is a finite set of bounded functions. This naturally proves that the associated
kernel

K(x, y) =
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

ψ`j,k(x)ψ`j,k(y),

is a well defined function of H, which has pointwise convergence. Therefore, for
any f ∈ H, equation (3.5) implies that
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〈
f(y), K(y, x)

〉
H

=
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f(y), ψ̃`j,k(y)

〉〈 L∑
r=1

jmax∑
m=jmin

∑
n∈Z

ψrm,n(x)ψrm,n(y), ψ̃`j,k(y)

〉

=
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f(y), ψ̃`j,k(y)

〉〈 L∑
r=1

jmax∑
m=jmin

∑
n∈Z

〈
ψ̃`j,k(y), ψrm,n(y)

〉
ψrm,n(x)

〉

=
L∑
`=1

jmax∑
j=jmin

∑
k∈Z

〈
f(y), ψ̃`j,k(y)

〉
ψ`j,k(x)

= f(x).

Hence, the framelet kernel in (3.4) is an admissible reproducing kernel. �

Example 3.2. Let

m0(ξ) =

(
1 + e−iξ

)4
16

be the refinement mask of the 2-band refinable function ϕ, which is a piecewise
cubic polynomial of order 4 supported on [0, 4].

Define the periodic measurable functions m`(ξ), ` = 1, 2, 3, 4 as follows:

m1(ξ) = −
(
1− e−iξ

)4
4

, m2(ξ) = −
(
1− e−iξ

)3
4

(
1 + e−iξ

)
,

m3(ξ) = −
√

6

(
1− e−iξ

)2
16

(
1 + e−iξ

)2
, m4(ξ) = −

(
1− e−iξ

)
4

(
1 + e−iξ

)3
,

Then, clearly {ψ1, ψ2, ψ3, ψ4} generates a framelet system with the framelet kernel

k(x, y) =
4∑
`=1

jmax∑
j=jmin

∑
k∈Z

ψ`j,k(x)ψ`j,k(y).

References

1. N. Bi, X. Dai and Q. Sun, Construction of compactly supported M -band wavelets, Appl.
Comput. Harmon. Anal. 6 (1999) 113-131.

2. A. Chai and Z. Shen, Deconvolution: a wavelet frame approach, Numer. Math. 106 (2007)
529-587.

3. I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal.14 (2003) 1-46.



66 FIRDOUS AHMAD SHAH1∗ AND MOHAMMAD YOUNUS BHAT2

4. L. Debnath and F. A. Shah, Wavelet Transforms and Their Applications, Birkhäuser,
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