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Abstract: The one-dimensional quaternion fractional Fourier transform (1DQFRFT) intro-
duces a fractional-order parameter that extends traditional Fourier transform techniques,
providing new insights into the analysis of quaternion-valued signals. This paper presents
a rigorous theoretical foundation for the 1DQFRFT, examining essential properties such
as linearity, the Plancherel theorem, conjugate symmetry, convolution, and a generalized
Parseval’s theorem that collectively demonstrate the transform’s analytical power. We
further explore the 1DQFRFT’s unique applications to probabilistic methods, particularly
for modeling and analyzing stochastic processes within a quaternionic framework. By
bridging quaternionic theory with probability, our study opens avenues for advanced
applications in signal processing, communications, and applied mathematics, potentially
driving significant advancements in these fields.

Keywords: quaternion fractional Fourier transform; probability theory; quaternion algebra;
characteristic function; stochastic processes; statistical analysis; quaternion-valued signals

MSC: 46L53; 42B10; 42B05; 60E05

1. Introduction
The theory of fractional Fourier transforms (FRFTs) [1–9] has evolved significantly

since its inception, primarily driven by the need to generalize the classical FT for various
applications in optics, signal processing, and quantum mechanics. The FRFT, which inter-
polates between the identity operation and the FT, provides a powerful tool for analyzing
signals in a rotated time–frequency plane. The quaternion fractional Fourier transform

Mathematics 2025, 13, 195 https://doi.org/10.3390/math13020195

https://doi.org/10.3390/math13020195
https://doi.org/10.3390/math13020195
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-0215-6204
https://orcid.org/0000-0002-5977-4911
https://orcid.org/0000-0002-2326-2914
https://orcid.org/0000-0001-6261-5586
https://orcid.org/0000-0002-6256-8641
https://doi.org/10.3390/math13020195
https://www.mdpi.com/article/10.3390/math13020195?type=check_update&version=1


Mathematics 2025, 13, 195 2 of 19

(QFRFT) [10–12] further extends this concept into the quaternion domain, offering a more
comprehensive framework for handling multi-dimensional and complex-valued signals.

The 1DQFRFT builds upon the foundations laid by the classical FRFT and the quater-
nion algebra, enabling the processing of signals with quaternionic components. This
transform not only preserves the fundamental characteristics of the FRFT, such as linearity,
shift, and modulation, but also introduces new capabilities specific to quaternionic sig-
nals. The 1DQFRFT has shown its versatility in various fields [13–20], including quantum
mechanics, tensor-valued decomposition, color image processing, and three-dimensional
signal analysis, where it effectively handles the challenges posed by multi-dimensional
data. Quaternion algebras have also been instrumental in developing and solving various
mathematical challenges. These include the formulation and resolution of quaternion
linear systems [21], the analysis of linear differential equations within the quaternionic
framework [22], and the advancement of sampling theories [23,24] that leverage quater-
nion properties. These applications demonstrate the algebras’ versatility and power in
addressing complex problems across multiple domains. Recent research has delve into
one-dimensional signal processing [23–26].

In this article, we present a detailed introduction to the 1DQFRFT, highlighting its
significance in probability theory. We explore key properties of the 1DQFRFT, such as
convolution, in the context of probability density functions (PDFs). This exploration is
crucial for understanding how quaternion-valued signals interact with systems or filters,
particularly when dealing with complex structures like color images or signals in 3D space.

1.1. State of the Art: Quaternion-Valued Signals in Probability Theory

Quaternion algebra has gained considerable attention in probability theory due to
its ability to effectively represent and manage multi-dimensional data. First introduced
by W.R. Hamilton in 1843 [27], this mathematical framework provides a powerful tool
for processing complex and multi-component signals. Its versatility has found applica-
tions in diverse fields, including 3D computer graphics, aerospace engineering, artificial
intelligence, and color image processing.

Quaternion-valued signals enhance traditional methods by extending them to higher
dimensions. Researchers have utilized quaternions to create sophisticated approaches for
analyzing stochastic processes with multiple interconnected components. This work has led
to the development of quaternion-valued random variables, probability density functions,
and characteristic functions, offering fresh perspectives and tools for probabilistic analysis.

Significant advancements in this field include the development of Quaternion Fourier
Transforms (QFTs) and their applications in signal processing. These transforms pro-
vide an efficient framework for managing quaternion-valued signals, maintaining their
multi-dimensional structure while supporting operations like filtering and reconstruc-
tion. Researchers [26,28–33] have expanded the theoretical and practical understanding
of quaternion signals within probability theory. Furthermore, quaternion-valued moment
functions have been introduced and analyzed, offering tools to characterize the statistical
properties of quaternion-valued random processes.

The integration of probability theory and quaternion algebra enriches theoretical frame-
works while unlocking practical applications in fields that rely on multi-dimensional signal
analysis. This interdisciplinary synergy fosters ongoing advancements, driving innovation
and providing novel insights into the processing and interpretation of complex signals.

The QFT is a valuable tool but has the following limitations:

1. It is confined to frequency-domain analysis, lacking the flexibility of fractional-
domain representations.

2. It does not readily connect with probabilistic tools like correlation or regression.
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3. Its utility in analyzing multi-dimensional quaternion-valued signals is limited.

The 1DQFRFT addresses these gaps by the following:

1. Enabling fractional-domain analysis between time and frequency.
2. Establishing a novel bridge between signal processing and probability theory.
3. Providing tools for multi-dimensional quaternion signal analysis, expanding its scope

to applications like physics and imaging.

This integration of probability theory and quaternion algebra enriches theoretical
frameworks while addressing the limitations of the QFT. The 1DQFRFT not only enhances
the flexibility of signal analysis through fractional-domain representations but also fosters
an interdisciplinary synergy. This connection unlocks practical applications in fields that
rely on multi-dimensional signal analysis, driving innovation and providing novel insights
into the processing and interpretation of complex signals. By bridging the gap between
signal processing and probability theory, the 1DQFRFT establishes itself as a transformative
tool in quaternion-based analysis, opening new frontiers in applications ranging from
physics to imaging and beyond.

This article is organized into distinct sections to systematically explore the integration
of the QFRFT with probability theory. Section 2 delves into the 1DQFRFT, discussing its
mathematical formulation and key properties. In Section 3, the focus shifts to applying
the QFRFT within the context of probability theory, highlighting its role in analyzing
quaternion-valued random variables and stochastic processes. Section 4 provides a dis-
cussion and analysis, critically evaluating the theoretical and practical implications of
the proposed methods, supported by examples and comparisons. Finally, Section 5 con-
cludes the article by summarizing the key findings and outlining potential avenues for
future research.

1.2. Theoretical Foundations

We begin by reviewing the fundamental concepts and definitions related to quater-
nions. Quaternions are an extension of complex numbers and form an associative but
non-commutative algebra over R. The set of quaternions is denoted by H. Any quaternion
q ∈ H can be expressed in the following form [34]:

q = qr + iqi + jqj + kqk, (1)

where qr, qi, qj, qk ∈ R. Here, qr represents the scalar part of q, denoted as Sc(q), while
iqi + jqj + kqk represents the vector (or pure) part of q, conventionally denoted as q⃗.

The multiplication rules for the quaternion units are as follows:

ij = −ji = k, jk = −kj = i, ki = −ik = j, (2)

i2 = j2 = k2 = ijk = −1, (3)

For two quaternions p, q ∈ H with vector parts p⃗ and q⃗, respectively, the quaternionic
multiplication qp is given by

qp = qr pr − q⃗ · p⃗ + qr p⃗ + q⃗pr, (4)

where

q⃗ · p⃗ = qi pi + qj pj + qk pk (5)

qp = i
(
qj pk − qk pj

)
+ j(qk pi − qi pk) + k

(
qi pj − qj pi

)
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Analogous to the complex case, the quaternion conjugate of q is defined as follows:

q = qr − iqi − jqj − kqk, (6)

which is an anti-involution, meaning qp = pq. Notice that the conjugate reverses the order
of multiplication.

From (6), the norm or modulus of a quaternion q ∈ H is defined as follows:

|q| =
√

q2
r + q2

i + q2
j + q2

k . (7)

It follows that

qq = qq = |q|2 (8)

Using the conjugate (6) and modulus (7), the inverse of a non-zero quaternion q ∈ H
is given by

q−1 =
q

|q|2 , (9)

which shows that H is a normed division algebra. When |q| = 1, q is a unit quaternion.
A quaternion q with qr = 0 is called a pure quaternion, and its square is the negative of the
sum of the squares of its components:

q2 = −(q2
i + q2

j + q2
k). (10)

The scalar part of the product of two quaternions p and q can be obtained as follows:

Sc(pq) =
1
2
(pq + qp) = prqr − p⃗ · q⃗ (11)

A quaternion number q may also be represented as a complex number with complex
and imaginary parts:

q = z1 + jz2, (12)

where

z1 = qr + iqi, z2 = qj + iqk.

This representation is known as the Cayley–Dickson form.
We define derivative operators for quaternions as follows:

∂

∂x
=

∂

∂xr
+

∂

∂xi
i +

∂

∂xj
j +

∂

∂xk
k (13)

where ∂
∂xr

and similar terms denote partial derivatives with respect to the
quaternion components.

Using the orthogonal planes split of q ∈ H with respect to the pure quaternion space,
we define

q+ =
1
2
(q + q), q− =

1
2
(q − q), (14)

where q+ is the symmetric part and q− is the antisymmetric part of q.
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In a similar manner to the complex case, an inner product for functions f and g in H is
defined as follows:

( f , g)L2(H;H) =
∫
H

f (x) · g(x) d4x,

where x ∈ H and d4x = dxrdxidxjdxk. Each quaternion function f can be decomposed as

f (x) = fr(x) + fi(x)i + f j(x)j + fk(x)k, (15)

where fr(x), fi(x), f j(x), and fk(x) are real-valued functions of x.
In particular, for f = g, the L2(H;H) norm is defined as follows:

∥ f ∥ =

(∫
H
| f (x)|2 d4x

)1/2
. (16)

2. One-Dimensional Quaternion Fractional Fourier Transform
with Properties

The 1DQFRFT with angle β of a signal f (t), denoted as Fβ(u), is defined as [35]

Fβ(u) = Aβ

∫
R

f (t)Kβ(u, t) dt, (17)

where Kβ(u, t) = exp
(

j
(

t2+u2

2 cot β − tu csc β
))

is the transforming kernel of the 1DQFRFT,

and Aβ =
√

1−j cot(β)
2π is the normalization constant.

The inverse transform is given by

f (t) =
∫
R

Fβ(u)K∗
β(u, t) du (18)

Here, β represents the rotation angle and ∗ denotes complex conjugation. The term

Aβ =
√

1−j cot(β)
2π is a scaling factor, and Fβ denotes the corresponding QFRFT with angle

β. For β = π
2 , the QFRFT simplifies to the QFT. From (17), we observe that if f (t) is a

real-valued function, we can interchange the position of the kernel Kβ(u, t) as follows:

Fβ(u) =
∫
R

f (t)Kβ(u, t) dt

=
∫
R

Kβ(u, t) f (t) dt (19)

Theorem 1. Let f ∈ L2(R;H); then, we have∫
R
| f (t)|2 dt =

∫
R
|Fβ(u)|2 du (20)

This Plancherel theorem demonstrates the preservation of energy between the original
signal f (t) and its 1DQFRFT Fβ(u). This property is essential for analyzing quaternion-
valued signals in the 1DQFRFT domain, similar to the classical Plancherel theorem for the
FT. The theorem plays a vital role in signal processing applications by ensuring that key
signal characteristics, such as energy or power, remain intact when transforming signals
from the time domain to the frequency domain using the 1DQFRFT.

The 1DQFRFT preserves the L2-norm of quaternion-valued functions, which implies
that smoothness (in terms of continuity and differentiability) is preserved after the transfor-
mation. This is crucial in ensuring that the transformation does not distort the underlying
signal in a way that would compromise its smoothness.
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Theorem 2 (Conjugate Symmetry for 1DQFRFT). Let f ∈ L2(R;H) be a quaternion-valued
function, and Fβ(u) be its 1DQFRFT with parameter β. Then, the following conjugate symmetry
property holds:

Fβ(u) = F−β(u)

Proof. We begin by recalling the definition (17) of the 1DQFRFT Fβ(u):

Fβ(u) = Aβ

∫
R

f (t)Kβ(u, t) dt,

Now, let us consider the complex conjugate of Fβ(u):

Fβ(u) = Aβ

∫
R

f (t)Kβ(u, t) dt

Since the kernel Kβ(u, t) is a complex exponential, taking its conjugate gives

Kβ(u, t) = exp
(
−j

(
t2 + u2

2
cot β − tu csc β

))
Notice that

Kβ(u, t) = K−β(u, t)

Thus, we can rewrite the expression for Fβ(u) as follows:

Fβ(u) = Aβ

∫
R

f (t)K−β(u, t) dt

Since the normalization constant Aβ depends on β, we have Aβ = A−β. Therefore,

Fβ(u) = A−β

∫
R

f (t)K−β(u, t) dt

This is precisely the 1DQFRFT of f (t) with parameter −β:

Fβ(u) = F−β(u)

Thus, the conjugate symmetry property is established.

Fβ( f )(u) =
∫
R

Aβ( fr(t)− i fi(t)− j f j(t)− k fk(t)) exp
(
−j

(t2 + u2)

2
cot β − tu csc β

)
dt

=
∫
R

Aβ fr(t)
(

exp
(
−j

(t2 + u2)

2
cot β − tu csc β

))
dt

− i
∫
R

Aβ fi(t)
(

exp
(
−j

(t2 + u2)

2
cot β − tu csc β

))
dt

− j
∫
R

Aβ f j(t)
(

exp
(
−j

(t2 + u2)

2
cot β − tu csc β

))
dt

− k
∫
R

Aβ fk(t)
(

exp
(
−j

(t2 + u2)

2
cot β − tu csc β

))
dt

= Fβ( fr)(u)− iFβ( fi)(u)− jFβ( f j)(u)− kFβ( fk)(u).

which completes the proof.

Theorem 3. For f ∈ Lp(R;H), where p = 1, 2, the following holds:
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1. If f is a real signal or if f (t) = fr(t) + j f j(t) (where fr(t) and f j(t) are the real and
imaginary components, respectively), then

Fβ( f )(u) = F−β( f )(u), ∀u ∈ R, (21)

where Fβ( f )(u) is the 1DQFRFT of f (t) with parameter β, and f denotes the quater-
nionic conjugate of f .

2. If f is a quaternionic signal, then it becomes

Fβ( f )(u) = F−β( fr)(u)− iFβ( fi)(u)− jF−β( f j)(u)− kFβ( fk)(u), (22)

where f (t) = fr(t) + i fi(t) + j f j(t) + k fk(t) represents the components of the quater-
nionic signal f .

The proof of this theorem can be seen in [35]. This is known as the conjugate symmetry
for the 1DQFRFT. One valuable tool associated with the 1DQFRFT is the convolution
operator. We will now revisit the definition of convolution and its corresponding theorem
for a brief overview.

Definition 1 (Quaternion Convolution for 1DQFRFT). Let f , g ∈ L1(R;H). The convolution
( f ∗ g)β associated with the 1DQFRFT Fβ(u) of f and g is defined by

( f ∗ g)β(t) =
∫
R

f (y)gβ(t − y) dy, (23)

where gβ(t) is the 1DQFRFT of g(t) with parameter β.

This definition extends the classical convolution operation to the quaternion-valued
signals in the context of the 1DQFRFT.

Theorem 4 (Convolution Theorem). For f ∈ L2(R;H) and g ∈ L1(R;H), the following holds:

Fβ( f ∗β g)(u) = Fβ( f )(u)Fβ(g)(u)e−iβu2
, ∀u ∈ R.

Proof. For any u ∈ R,

Fβ( f ∗β g)(u) = Fβ

(
f1 ∗ g1 − F−2β( f2) ∗ g2

)
(u) + jFβ

(
f2 ∗ g1 + F−2β( f1) ∗ g1

)
(u)

= Fβ( f1)(u)Fβ(g1)(u)e−iβu2 − Fβ

(
F−2β( f2)

)
(u)Fβ(g2)(u)e−iβu2

+ j
[

Fβ( f2)(u)Fβ(g1)(u)e−iβu2
+ Fβ

(
F−2β( f1)

)
(u)Fβ(g1)(u)e−iβu2

]
=

[
Fβ( f1)(u)Fβ(g1)(u)− Fβ(F−2β( f2))(u)Fβ(g2)(u)

]
e−iβu2

+ j
[
Fβ( f2)(u)Fβ(g1)(u) + Fβ(F−2β( f1))(u)Fβ(g1)(u)

]
e−iβu2

=
[
Fβ( f1)(u)Fβ(g1)(u)− F−β( f2)(u)Fβ(g2)(u)

]
e−iβu2

+ j
[
Fβ( f2)(u)Fβ(g1)(u) + F−β( f1)(u)Fβ(g1)(u)

]
e−iβu2

= Fβ( f )(u)Fβ(g)(u)e−iβu2
.

Hence, the theorem is proved.

The preservation of stability is shown by demonstrating that the 1DQFRFT of a convo-
lution of two functions is equivalent to the product of their individual transforms. This
ensures that the stability, in terms of boundedness and control over growth, is maintained
under the transform.
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Theorem 5 (Differential Property). Let f (t) ∈ L2(R;H). Then, the 1DQFRFT of the k-th
derivative of f (t) is given by

Fβ

[
dk f (t)

dtk

]
(u) =

(
cos β

d
du

+ sin βju
)k

Fβ(u) (24)

for all k ≥ 1.

Proof. We prove this by mathematical induction on k. For k = 1, the property reduces to

Fβ
[

f ′(t)
]
(u) =

(
cos β

d
du

+ sin βju
)

Fβ(u). (25)

This can be proven by differentiating the inverse 1DQFRFT with respect to t:

f (t) =
∫
R

Fβ(u)K∗
β(u, t) du,

d
dt

f (t) =
∫
R

Fβ(u)
∂

∂t
K∗

β(u, t) du.

The kernel Kβ(u, t) is given by

Kβ(u, t) = exp
(

j
(

t2 + u2

2
cot β − tu csc β

))
. (26)

Differentiating with respect to t, we have

∂

∂t
K∗

β(u, t) = (−jt cot β + ju csc β)K∗
β(u, t)

= j(u csc β − t cot β)K∗
β(u, t).

(27)

Thus, we obtain

d
dt

f (t) =
∫
R

Fβ(u) j(u csc β − t cot β)K∗
β(u, t) du. (28)

Taking the 1DQFRFT of both sides and applying the property of the kernel function
leads to the desired result in (25).

Assume that the property holds for k = n, i.e.,

Fβ

[
dn f (t)

dtn

]
(u) =

(
cos β

d
du

+ sin βju
)n

Fβ(u). (29)

We need to prove that the property holds for k = n + 1. Consider

dn+1 f (t)
dtn+1 =

d
dt

(
dn f (t)

dtn

)
.

Taking the 1DQFRFT of both sides,

Fβ

[
dn+1 f (t)

dtn+1

]
(u) = Fβ

[
d
dt

(
dn f (t)

dtn

)]
(u)

=

(
cos β

d
du

+ sin βju
)

Fβ

[
dn f (t)

dtn

]
(u).
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Using the inductive hypothesis,

Fβ

[
dn+1 f (t)

dtn+1

]
(u) =

(
cos β

d
du

+ sin βju
)(

cos β
d

du
+ sin βju

)n
Fβ(u) (30)

=

(
cos β

d
du

+ sin βju
)n+1

Fβ(u). (31)

Thus, the property holds for k = n + 1.
By mathematical induction, the property holds for all k ≥ 1.

The above differential property provides a framework for understanding how the
1DQFRFT interacts with signal derivatives. The operator involved ensures that smooth,
differentiable signals retain their behavior after transformation, supporting the stability
and smoothness of the signal.

Theorem 6 (Linearity). Given two quaternion-valued functions f (t) and g(t), and scalars a and
b, we aim to prove the linearity of the 1DQFRFT:

Fβ{a f (t) + bg(t)}(u) = aFβ{ f (t)}(u) + bFβ{g(t)}(u) (32)

where the 1DQFRFT is defined as follows:

Fβ{ f (t)}(u) =
∫
R

f (t)Kβ(u, t) dt

and Kβ(u, t) is the quaternionic kernel associated with the 1DQFRFT.

Proof. Let us consider

Fβ{a f (t) + bg(t)}(u) =
∫
R
[a f (t) + bg(t)]Kβ(u, t) dt

=
∫
R

[
a f (t)Kβ(u, t) + bg(t)Kβ(u, t)

]
dt

= a
∫
R

f (t)Kβ(u, t) dt + b
∫
R

g(t)Kβ(u, t) dt

= aFβ{ f (t)}(u) + bFβ{g(t)}(u) (33)

which shows that Fβ(u) is linear.

3. One-Dimensional Quaternion Fractional Fourier Transform in
Probability Theory

A quaternion-valued probability density function (PDF) fX(x) satisfies the following
conditions:

1. Positivity: f X
a (x) ≥ 0, f X

b (x) ≥ 0, f X
c (x) ≥ 0, f X

d (x) ≥ 0 for all x ∈ R.
2. Normalization: ∫ ∞

−∞
fX(x) dx = 1,

where the integral is taken component-wise, i.e.,∫ ∞

−∞
f X
a (x) dx + i

∫ ∞

−∞
f X
b (x) dx + j

∫ ∞

−∞
f X
c (x) dx + k

∫ ∞

−∞
f X
d (x) dx = 1.

When the 1DQFRFT is applied to fX(x), the resulting transform Fβ( fX)(u) captures
the frequency domain representation of the quaternion-valued function in the context of
the QFRFT parameter β. Mathematically, the 1DQFRFT of fX(x) is defined as follows:
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Fβ( fX)(u) =
∫
R

fX(x)Kβ(x, u) dx,

where Kβ(x, u) is the kernel of the 1DQFRFT, which depends on the parameter β.
Expressing fX(x) in terms of its components, we can write

Fβ( fX)(u) = ∑
α=a,b,c,d

eα

∫
R

f X
α (x)Kβ(x, u) dx,

where eα represents the quaternionic units 1, i, j, and k, respectively, and f X
α (x) are the

scalar components of fX(x).

Definition 2. The quaternion cumulative distribution function (CDF) FX(x) for the 1DQFRFT
Fβ(u) can be expressed as the derivative of the quaternion cumulative distribution function FX(x)
with respect to x:

fX(x) =
d

dx
FX(x), (34)

where the probability P is related to FX(x) by

FX(x) = P(X ≤ x).

Applying the 1DQFRFT to the CDF

Fβ[FX ](u) =
∫
R

FX(x)K j
β(x, u) dx, (35)

where K j
β(x, u) is the kernel of the 1DQFRFT.

The corresponding PDF in the 1DQFRFT domain can be found by differentiating Fβ[FX ](u)
with respect to x:

Fβ[ fX ](u) =
d

dx
Fβ[FX ](u).

Definition 3 (Expected value). In the 1DQFRFT domain, the expected value is given by

E[X] =
∫
R

xFβ
fX
(u) du, (36)

where Fβ
fX
(u) is the 1DQFRFT of the PDF fX(x).

In the 1DQFRFT domain, the expected value captures the distribution of X across
fractional Fourier orders, providing a more generalized view of the frequency-domain
behavior of the random variable.

Definition 4 (The mean). The mean of a quaternion-valued random variable X in the context of
the 1DQFRFT is defined similarly to the traditional mean, but it incorporates the fractional Fourier
domain characteristics. Given a quaternion-valued random variable X with a quaternion PDF
fX(x), the mean in the 1DQFRFT domain is given by

E[X] =
∫
R

xFβ
fX
(u) du,

where Fβ
fX
(u) represents the 1DQFRFT of the PDF fX(x).

Table 1 presents an overview of the 1DQFT, 1DQLCT, and 1DQFRFT, emphasizing
their roles in probability theory.
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Table 1. An Overview of 1DQFT, 1DQLCT, and 1DQFRFT in probability theory.

Feature 1DQFT 1DQLCT 1DQFRFT

Transformation F [ f (t)](u) =
∫
R f (t)e−jut dt

QA[ f (t)](u) =∫
R f (t)K j

A(t, u) dt

Fβ[ f (t)](u) =∫
R f (t)K j

β(t, u) dt

CDF FX(x) = P(X ≤ x) FX(x) = P(X ≤ x) FX(x) = P(X ≤ x)

PDF fX(x) = d
dx FX(x) fX(x) = d

dx FX(x) fX(x) = d
dx FX(x)

Expected Value E[X] =
∫
R x fX(x) dx E[X] =

∫
R x fX(x) dx E[X] =

∫
R x fX(x) dx

Variance Var(X) = E[X2]− (E[X])2 Var(X) = E[X2]− (E[X])2 Var(X) = E[X2]− (E[X])2

Characteristic Function φX(u) = E[ejuX ] = F [ fX ](u) φX(u) = QA[ fX ](u) φX(u) = Fβ[ fX ](u)

Differentiation Property F
{

dn f (t)
dtn

}
= (−j)nF{ f (t)}

Q
{

d f (t)
dt

}
=(

−juc + a d
du

)
Q{ f (t)}

Fβ

{
d f (t)

dt

}
=(

cos β d
du + sin βju

)
Fβ{ f (u)}

Convolution Theorem F [ f ∗ g](u) =
F [ f ](u)F [g](u)

QA[ f ∗ g](u) =
QA[ f ](u)QA[g](u)

Fβ[ f ∗ g](u) =
Fβ[ f ](u)Fβ[g](u)

Energy Preservation
(Plancherel)

∫
R | f (t)|2 dt =∫

R |F [ f (u)]|2 du

∫
R | f (t)|2 dt =∫

R |QA[ f (u)]|2 du

∫
R | f (t)|2 dt =∫

R |Fβ[ f (u)]|2 du

Example 1. Consider a quaternion-valued random variable X(t) with the quaternion PDF given by

fX(x) = f X
a (x) + i f X

b (x) + j f X
c (x) + k f X

d (x),

where f X
a (x), f X

b (x), f X
c (x), and f X

d (x) are the real-valued PDFs of the components Xa, Xb, Xc,
and Xd, respectively.

Assume the following PDFs for the components:

f X
a (x) =

1√
2π

e−
x2
2 , f X

b (x) =
1
2

e−|x|, f X
c (x) =

1
π(1 + x2)

, f X
d (x) =

 1
2 e−x, x ≥ 0,

0, otherwise.

The mean of X in the 1DQFRFT domain is defined as follows:

E[X] =
∫ ∞

−∞
xFβ

fX
(u) du,

where Fβ
fX
(u) is the 1DQFRFT of the PDF fX(x). The 1DQFRFT can be calculated component-wise.

For Xa (Gaussian Distribution):

Fβ

f X
a
(u) = Fβ

{
1√
2π

e−
x2
2

}
(u)

The 1DQFRFT of a Gaussian function remains a Gaussian function (with possible scaling
depending on β).

For Xb (Laplace Distribution):

Fβ

f X
b
(u) = Fβ

{
1
2

e−|x|
}
(u)

The 1DQFRFT of a Laplace distribution typically results in a function that resembles the original
distribution but shifted and scaled in the fractional Fourier domain.

For Xc (Cauchy Distribution):

Fβ

f X
c
(u) = Fβ

{
1

π(1 + x2)

}
(u)
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The Cauchy distribution in the 1DQFRFT domain will also produce a function related to the
Cauchy distribution.

For Xd (Exponential Distribution):

Fβ

f X
d
(u) = Fβ

{
1
2

e−x for x ≥ 0 and 0 otherwise
}
(u)

The exponential distribution will transform into another function in the fractional Fourier do-
main.

The expected values can also be calculated component-wise.
For Xa:

E[Xa] =
∫ ∞

−∞
xFβ

f X
a
(u) du

Since the Gaussian function is symmetric around 0, the mean E[Xa] will be 0.
For Xb:

E[Xb] =
∫ ∞

−∞
xFβ

f X
b
(u) du

The mean of the Laplace distribution is 0, and this will remain the same in the 1DQFRFT domain
(due to the symmetry and transformation properties).

For Xc:

E[Xc] =
∫ ∞

−∞
xFβ

f X
c
(u) du

The Cauchy distribution does not have a well-defined mean in the traditional sense due to its
heavy tails, so this component contributes nothing to the mean.

For Xd:

E[Xd] =
∫ ∞

−∞
xFβ

f X
d
(u) du

The mean of the exponential distribution f X
d (x) = 1

2 e−x is 1/2, and this will remain the same in
the fractional domain.

Combining all the results and substituting the calculated values, we obtain the mean of X in the
1DQFRFT domain as

E[X] = E[Xa] + iE[Xb] + jE[Xc] + kE[Xd]

= 0 + i(0) + j(0) + k
(

1
2

)
=

k
2

.

From above example, the following result can easily be verified

E[X] = E[Xa]− iE[Xb]− jE[Xc]− kE[Xd] (37)

Example 2. The quaternion-valued PDF is given by

fX(x) =

1 + j · 0.5 for x ∈ [0, 1]

0 otherwise

Using the definition (36), we compute the expected value of the real part as

E[Xa] =
∫ 1

0
x dx =

1
2

The expected value of the imaginary parts Xb and Xc are zero:

E[Xb] = E[Xc] = 0

The expected value of the imaginary part Xd is

E[Xd] =
∫ 1

0
0.5 · x dx = 0.25
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Thus, the final expected value is

E[X] =
1
2
+ 0.25k

Definition 5. Let X be a real random variable with the quaternion probability density function fX(x).
The characteristic function of X, χX : R → H, is defined by the formula

χX(t) = E[eitX ] =
∫
R

fX(x)eitx dx. (38)

The Equation (38) above may be expressed in the form

χX(t) =
∫
R

(
f X
a (x) + i f X

b (x) + j f X
c (x) + k f X

d (x)
)

eitx dx

=
∫
R

f X
a (x)eitx dx + i

∫
R

f X
b (x)eitx dx + j

∫
R

f X
c (x)eitx dx + k

∫
R

f X
d (x)eitx dx

= χX
a (t) + iχX

b (t) + jχX
c (t) + kχX

d (t),

(39)

where
χX

i (t) =
∫
R

f X
i (x)eitx dx, i = a, b, c, d.

In the 1DQFRFT domain, the characteristic function is defined by applying the 1DQFRFT to the
quaternion-valued probability density function:

Fβ{χX}(u) =
∫
R

χX(t)Kβ(t, u) dt.

The characteristic function Fβ{χX}(u) provides a comprehensive insight into the behavior of
quaternion-valued distributions by capturing their transformation across fractional orders. This
enables a nuanced analysis of characteristics such as mean and variance in fractional domains, making
the 1DQFRFT particularly valuable for studying non-stationary signals and distributions with com-
plex dynamics. The continuity of the characteristic function in the 1DQFRFT domain is guaranteed
by the smoothness and boundedness of the kernel Kβ(t, u), along with the L2-norm preservation
ensured by the linearity and unitarity of the 1DQFRFT. In practical applications, high-resolution dis-
cretization and stable numerical methods play a crucial role in preserving these theoretical properties,
maintaining smoothness and stability during fractional-order approximations.

Lemma 1. Let X(t) be a real random variable. Then,

Fβ{X(t)}(u) = aFβ{X(t)}(u) + ibFβ{X(t)}(u) + jcFβ{X(t)}(u) + kdFβ{X(t)}(u). (40)

Proof. In fact, we have

Fβ{X(t)}(u) =
∫ ∞

−∞
X(t)Kβ(t, u) dt,

from the definition (17) of the 1DQFRFT. This can be written as follows:

Fβ{X(t)}(u) =
∫ ∞

−∞
(a fX(x) + ib fX(x) + jc fX(x) + kd fX(x))Kβ(t, u) dt.

The integral can be distributed:

Fβ{X(t)}(u) = a
∫ ∞

−∞
fX(x)Kβ(t, u) dt

+ ib
∫ ∞

−∞
fX(x)Kβ(t, u) dt

+ jc
∫ ∞

−∞
fX(x)Kβ(t, u) dt

+ kd
∫ ∞

−∞
fX(x)Kβ(t, u) dt.

Therefore, we have

Fβ{X(t)}(u) = aFβ{X(t)}(u) + ibFβ{X(t)}(u) + jcFβ{X(t)}(u) + kdFβ{X(t)}(u).
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This is the desired result.

Lemma 2 (Riemann–Lebesgue Lemma). For a quaternion density function fX ∈ L1(H;H), the character-
istic function χX(t) satisfies the following:

lim
|t|→∞

χX(t) = 0.

Proof. Given that the characteristic function χX(t) of a random variable X is defined as

χX(t) = E[eitX ] =
∫
R

fX(x)eitx dx,

and the 1DQFRFT with angle β is given (17)

Fβ(u) = Aβ

∫
R

f (t)Kβ(u, t) dt,

we will use the 1DQFRFT to demonstrate that χX(t) → 0 as |t| → ∞.
The characteristic function χX(t) can be connected to the 1D QFRFT by examining how the

QFRFT affects the density function fX . The goal is to analyze the behavior of

χX(t) =
∫
R

fX(x)eitx dx.

This function behaves similarly to Fβ(u) when β = π/2 because the FRFT generalizes the FT.
The kernel Kβ(u, t) in the 1DQFRFT expression introduces a phase that oscillates rapidly when

u is large:

Kβ(u, t) = exp
(

j
(

t2 + u2

2
cot β − tu csc β

))
.

For large |u|, the oscillations of Kβ(u, t) dominate the integral’s behavior.
By substituting into the 1DQFRFT, we obtain

χX(t) =
∫
R

fX(x)eitx dx =
∫
R

fX(t)Kβ(u, t) dt,

where we interpret Kβ(u, t) in terms of its oscillatory behavior when β = π/2 to approximate the
Fourier-like behavior.

For |t| → ∞, the integral

Fβ(u) = Aβ

∫
R

fX(t) exp
(

j
(

t2 + u2

2
cot β − tu csc β

))
dt

tends to zero because the highly oscillatory nature of exp(j(−tu csc β)) causes the terms to cancel out,
especially when combined with the normalization factor Aβ.

Thus,

lim
|t|→∞

χX(t) = lim
|t|→∞

Aβ

∫
R

fX(t) exp
(

j
(

t2 + u2

2
cot β − tu csc β

))
dt = 0,

due to the Riemann–Lebesgue Lemma for oscillatory integrals.

The characteristic function χX(t), analyzed through the framework of the 1DQFRFT, shows
that the oscillatory nature of the kernel as |t| → ∞ ensures that χX(t) → 0. This conclusion aligns
with the classical result but extends naturally to quaternion-valued functions and their fractional
transforms, demonstrating the vanishing of the characteristic function at infinity.

Theorem 7 (Continuity). The characteristic function χX(t) of a quaternion-valued random variable X is
continuous with respect to t.

Proof. Using the definition of the characteristic function, we have

χX(t) = E[eitX ] =
∫
R

fX(x)eitx dx,
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where fX(x) is the probability density function (pdf) of X.
To show continuity, consider |χX(t + h)− χX(t)|:

|χX(t + h)− χX(t)| =
∣∣∣∣∫R fX(x)

(
ei(t+h)x − eitx

)
dx

∣∣∣∣.
by factoring out eitx:

|χX(t + h)− χX(t)| =
∣∣∣∣∫R fX(x)eitx

(
eihx − 1

)
dx

∣∣∣∣.
Using the triangle inequality, we obtain

|χX(t + h)− χX(t)| ≤
∫
R
| fX(x)| · |eihx − 1|dx.

Now, note that
|eihx − 1| ≤ 2| fX(x)|, and 2| fX(x)| ∈ L1(R),

ensuring that the integrand is absolutely integrable. By the Dominated Convergence Theorem,∫
R
| fX(x)| · |eihx − 1|dx → 0 as h → 0.

Thus, we conclude
lim
h→0

|χX(t + h)− χX(t)| = 0.

Therefore, χX(t) is continuous with respect to t.

In the context of the 1DQFRFT, the continuity of the characteristic function implies that the
transform preserves the smoothness and stability of the signal or probability distribution under
transformations involving quaternionic variables. This continuity is essential for ensuring reliable
signal analysis and processing when dealing with quaternion-valued data. The continuity property
guarantees that small perturbations in the time or frequency domain result in proportionally small
changes in the transformed space, which is crucial for practical applications in signal processing,
communications, and control systems involving quaternion data representations.

Theorem 8 (Parseval’s Identity for 1DQFRFT). Let Fβ(u) and Gβ(u) be the 1DQFRFT of functions fX(t)
and gX(t), respectively, defined using the kernel Kβ(u, t). The 1DQFRFT is defined by

Fβ(u) =
∫
R

f (t)Kβ(u, t) dt,

where Kβ(u, t) is the kernel of the 1DQFRFT. Parseval’s identity states∫
R

Gβ(t)Fβ(t)∗ dt =
∫
R

∫
R

gX(x) fX(y)Kβ(x, y) dx dy,

where ∗ denotes the quaternion conjugate.

Proof. Since fX(t), gX(t), and the 1DQFRFT kernel Kβ(u, t) are quaternions, we will decompose
each into their scalar components:

fX(t) = f0(t) + f1(t)i + f2(t)j + f3(t)k,

gX(t) = g0(t) + g1(t)i + g2(t)j + g3(t)k,

Kβ(u, t) = K0(u, t) + K1(u, t)i + K2(u, t)j + K3(u, t)k.

Each component function fn(t), gn(t), Kn(u, t) (for n = 0, 1, 2, 3) is real-valued.
The 1DQFRFT is computed component-wise:

Fβ,n(u) =
∫
R

fn(t)Kn(u, t) dt,
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Gβ,n(u) =
∫
R

gn(t)Kn(u, t) dt.

The corresponding transformed components are multiplied component-wise. The inner product
of the transformed functions is

∫
R

Gβ(t)Fβ(t)∗ dt =
3

∑
n=0

∫
R

Gβ,n(t)Fβ,n(t) dt.

Substituting the expressions for Fβ,n(t) and Gβ,n(t) yields

∫
R

Gβ,n(t)Fβ,n(t) dt =
∫
R

(∫
R

gn(x)Kn(t, x) dx
)(∫

R
fn(y)Kn(t, y) dy

)
dt.

Applying Fubini’s theorem component-wise to interchange the order of integration yields∫
R

∫
R

∫
R

Kn(t, x)Kn(t, y) dt gn(x) fn(y) dx dy.

Using the orthogonality property of the kernel components Kn(u, t) yields∫
R

Kn(t, x)Kn(t, y) dt = Kn(x, y).

Thus, ∫
R

Gβ,n(t)Fβ,n(t) dt =
∫
R

∫
R

gn(x) fn(y)Kn(x, y) dx dy.

Summing the results over all components

3

∑
n=0

∫
R

Gβ,n(t)Fβ,n(t) dt =
3

∑
n=0

∫
R

∫
R

gn(x) fn(y)Kn(x, y) dx dy,

yields ∫
R

Gβ(t)Fβ(t)∗ dt =
∫
R

∫
R

gX(x) fX(y)Kβ(x, y) dx dy.

which completes the proof.

Definition 6 (Variance). For a real random variable X, the variance is defined as follows:

σ2 = E[(X −E[X])2] = E[X2]− (E[X])2. (41)

The quaternionic characteristic function in the 1DQFRFT domain is given by

Fβ{X(t)}(u) =
∫ ∞

−∞
fX(x)Kβ(t, u) dx, (42)

where Kβ(t, u) is the kernel of the 1DQFRFT. To find the variance using the 1DQFRFT, we need the first and
second derivatives of Fβ{X(t)}(u) with respect to t at t = 0:

d
dt
Fβ{X(t)}(u)

∣∣∣∣
t=0

· (−i), (43)

d2

dt2 Fβ{X(t)}(u)
∣∣∣∣
t=0

· (−i)2. (44)

The variance σ2 can be computed using the following formula:

σ2 =
d2

dt2 Fβ{X(t)}(u)
∣∣∣∣
t=0

· (−i)2 −
(

d
dt
Fβ{X(t)}(u)

∣∣∣∣
t=0

· (−i)
)2

. (45)
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Example 3. Consider a real random variable X uniformly distributed over the interval [−1, 1]. The probability
density function (PDF) is as follows:

fX(x) =

 1
2 if − 1 ≤ x ≤ 1,

0 otherwise.
(46)

E[X]:

E[X] =
∫ 1

−1
x

1
2

dx = 0.

E[X2]:

E[X2] =
∫ 1

−1
x2 1

2
dx =

1
3

.

Variance σ2:
σ2 = E[X2]− (E[X])2 =

1
3

.

In the context of the 1DQFRFT, this variance can also be computed through the derivatives of the
quaternionic characteristic function, as illustrated above. For this simple case, the result matches what
you would get from the traditional method, but using 1DQFRFT provides a more generalized approach
applicable to more complex quaternionic distributions.

4. Discussion and Analysis
The 1DQFRFT provides the most general framework, capable of handling both stationary

and non-stationary processes, with the added benefit of fractional order, making it suitable for
processes with fractional dynamics or other complex probabilistic structures. In summary, while
the QFT provides the foundation, the QLCT and 1DQFRFT offer progressively more flexibility and
capability in analyzing quaternionic signals and stochastic processes in probability theory. The choice
of transform depends on the specific requirements of the problem at hand, such as the nature of
the signal or process being studied and the desired level of detail in the analysis. While the 1DQFT
expected value operates purely in the time domain, the 1DQLCT and 1DQFRFT expected values
involve transformations that provide additional insights into how the quaternion random variable’s
distribution behaves under different transformations. The 1DQLCT focuses on shifts and scales,
whereas the 1DQFRFT emphasizes fractional Fourier orders.

5. Conclusions and Future Perspectives
In this study, we investigated key probabilistic concepts within this framework, including the

characteristic function, expected value, probability density function, and variance under the 1DQFRFT.
These results highlight the potential of the 1DQFRFT to enhance the development of probability theory
in the context of quaternion algebra, offering new avenues for research and application in fields requiring
advanced signal processing techniques.

Future work will focus on further exploring the implications of the 1DQFRFT in uncertainty
principles and how the quaternion probability density function interacts with its corresponding
characteristic function. This exploration will deepen our understanding of the interplay between
time–frequency localization and probabilistic properties in the quaternion setting.
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