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1 | MOTIVATION AND INTRODUCTION

For analyzing signals and images, transforms like Fourier and wavelet are essential and effective tools. Using the Fourier
transform, the signals from the original domain are mapped to frequency one. The fact is that the characteristics of a signal
are more clearly visible in the frequency domain. On the other hand, wavelet bases signals are localized in both time and
frequency domains [1] and thus provide a well-structured representation of signals and hence yield a better information
about the behavior of the signals. It was Morlet et al. [2| who first worked on wavelet analysis to study seismic waves.
He along with Grossman investigated a mathematical study of a continuous wavelet transform [3]. Meyer [4] identified
the relation between harmonic analysis and Morlet’s theory and provided a mathematical foundation to the continuous
wavelet theory which lead to the development of wavelet analysis. The continuous wavelet transform of a square integrable
function f starts by a convolution with copies of a given mother wavelet 7 translated and dilated by b€ Randa € R”,
respectively [1]. The function 7 is required to follow the following admissibility condition as

o
Ar =/ ALY dx < 4+ (1)
: x|

where 7(x) is the Fourier transform of 7 [1]. One can visit 5] for more information on real wavelets.
Wavelet theory has shown remarkable success in several special domains like image/signal processing,
statistics, finance, health, and engineering. This achievement motivate researchers to create new, more effective methods
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