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Abstract. The concept of vector-valued multiresolution analysis on local field
of positive characteristic was considered by Abdullah [Vector-valued multires-

olution analysis on local fields of positive characteristic, Analysis. 34(2014)

415-428]. We construct the associated wavelet packets for such an MRA and
investigate their properties by virtue of the Fourier transform. Moreover, it is

shown how to obtain several new bases of the space L2
(
K,CN

)
by construct-

ing a series of subspaces of these vector-valued wavelet packets.

1. Introduction

In recent years there has been a considerable interest in the problem of con-
structing wavelet bases on various groups. R.L. Benedetto and J.J. Benedetto [3]
developed a wavelet theory for local fields and related groups. They did not develop
the multiresolution analysis (MRA) approach, their method is based on the theory
of wavelet sets and only allows the construction of wavelet functions whose Fourier
transforms are characteristic functions of some sets. Since local fields are essentially
of two types: zero and positive characteristic (excluding the connected local fields
R and C). Examples of local fields of characteristic zero include the p-adic field
Qp where as local fields of positive characteristic are the Cantor dyadic group and
the Vilenkin p-groups. Even though the structures and metrics of local fields of
zero and positive characteristics are similar, but their wavelet and multiresolution
analysis theory are quite different. The concept of multiresolution analysis on a
local field K of positive characteristic was introduced by Jiang et al. [8]. They
pointed out a method for constructing orthogonal wavelets on local field K with a
constant generating sequence. Subsequently, tight wavelet frames on local fields of
positive characteristic were constructed by Shah and Debnath [11] using extension
principles. For more about wavelets and their applications, we refer the monograph
[7].

It is well known that the classical orthonormal wavelet bases have poor frequency
localization. For example, if the wavelet ψ is band limited, then the measure of

the supp of (ψj,k)∧ is 2j-times that of supp ψ̂. To overcome this disadvantage,
Coifman et al. [6] introduced the notion of orthogonal univariate wavelet packets.
Well known Daubechies orthogonal wavelets are a special of wavelet packets. Chui
and Li [5] generalized the concept of orthogonal wavelet packets to the case of non-
orthogonal wavelet packets so that they can be employed to the spline wavelets and
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so on. Shen [12] generalized the notion of univariate orthogonal wavelet packets to
the case of multivariate wavelet packets. The construction of wavelet packets and
wavelet frame packets on local fields of positive characteristic were recently reported
by Behera and Jahan in [2]. They proved lemma on the so-called splitting trick and
several theorems concerning the Fourier transform of the wavelet packets and the
construction of wavelet packets to show that their translates form an orthonormal
basis of L2(K). Other notable generalizations are the vector-valued wavelet packets
[4], wavelet packets and framelet packets related to the Walsh polynomials [9] and
M -band framelet packets [10].

Recently, Abdullah [1] has generalized the classic theory of multiresolution anal-
ysis on Euclidean spaces Rn to vector-valued multiresolution analysis on local fields
of positive characteristic. Motivated and inspired by the concept of vector-valued
multiresolution analysis on local fields of positive characteristic, we construct the
associated orthogonal wavelet packets for such an MRA on local fields of posi-
tive characteristic. More precisely, we show that the collection of all dilations and
translations of the wavelet packets is an overcomplete system in L2

(
K,CN

)
.

This paper is organized as follows. In Section 2, we discuss some preliminary
facts about local fields of positive characteristic and introduce the notion of vector-
valued multiresolution analysis on local field K. In Section 3, we construct vector-
valued wavelet packets associated with vector scaling function Φ and show how
they generate an orthonormal basis for L2

(
K,CN

)
. In Section 4, we provide a

direct decomposition for the space L2
(
K,CN

)
in terms of the vector-valued wavelet

packets.

2. Preliminaries and Vector-valued MRA on Local Fields

Let K be a field and a topological space. Then K is called a local field if both K+

and K∗ are locally compact Abelian groups, where K+ and K∗ denote the additive
and multiplicative groups of K, respectively. If K is any field and is endowed with
the discrete topology, then K is a local field. Further, if K is connected, then K
is either R or C. If K is not connected, then it is totally disconnected. Hence
by a local field, we mean a field K which is locally compact, non-discrete and
totally disconnected. The p-adic fields are examples of local fields. More details
are referred to [13]. In the rest of this paper, we use the symbols N,N0 and Z to
denote the sets of natural, non-negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact
Abelian group K+. If α ∈ K and α 6= 0, then d(αx) is also a Haar measure. Let
d(αx) = |α|dx. We call |α| the absolute value of α. Moreover, the map x→ |x| has
the following properties: (a) |x| = 0 if and only if x = 0; (b) |xy| = |x||y| for all
x, y ∈ K; and (c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K. Property (c) is called the
ultrametric inequality. The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers
in K. Define B = {x ∈ K : |x| < 1}. The set B is called the prime ideal in K. The
prime ideal in K is the unique maximal ideal in D and hence as result B is both
principal and prime. Since the local field K is totally disconnected, so there exist
an element of B of maximal absolute value. Let p be a fixed element of maximum
absolute value in B. Such an element is called a prime element of K. Therefore,
for such an ideal B in D, we have B = 〈p〉 = pD. As it was proved in [13], the
set D is compact and open. Hence, B is compact and open. Therefore, the residue
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space D/B is isomorphic to a finite field GF (q), where q = pk for some prime p
and k ∈ N.

Let D∗ = D \B = {x ∈ K : |x| = 1}. Then, it can be proved that D∗ is a group
of units in K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗. For a proof of
this fact we refer to [17]. Moreover, each Bk = pkD =

{
x ∈ K : |x| < q−k

}
is a

compact subgroup of K+ and usually known as the fractional ideals of K+. Let
U = {ai}q−1i=0 be any fixed full set of coset representatives of B in D, then every
element x ∈ K can be expressed uniquely as x =

∑∞
`=k c`p

` with c` ∈ U . Let χ be
a fixed character on K+ that is trivial on D but is non-trivial on B−1. Therefore,
χ is constant on cosets of D so if y ∈ Bk, then χy(x) = χ(yx), x ∈ K. Suppose that
χu is any character on K+, then clearly the restriction χu|D is also a character on
D. Therefore, if {u(n) : n ∈ N0} is a complete list of distinct coset representative
of D in K+, then, as it was proved in [13], the set

{
χu(n) : n ∈ N0

}
of distinct

characters on D is a complete orthonormal system on D.

The Fourier transform f̂ of a function f ∈ L1(K) ∩ L2(K) is defined by

f̂(ξ) =

∫
K

f(x)χξ(x)dx. (2.1)

It is noted that

f̂(ξ) =

∫
K

f(x)χξ(x)dx =

∫
K

f(x)χ(−ξx)dx.

Furthermore, the properties of Fourier transform on local field K are much simi-
lar to those of on the real line. In particular Fourier transform is unitary on L2(K).

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=
GF (q) where GF (q) is a c-dimensional vector space over the field GF (p). We choose

a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span {ζj}c−1j=0
∼= GF (q). For n ∈ N0

satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define

u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p−1. (2.2)

Also, for n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we
set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s. (2.3)

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) =
u(m) + u(n). But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk + s) = u(r)p−k + u(s).
Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and {u(`)+u(k) :
k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0. Hereafter we use the notation
χn = χu(n), n ≥ 0.
Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above.
We define a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.

(2.4)

Next, we introduce the notion of vector-valued nonuniform multiresolution analysis
on local field K of positive characteristic.
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Let N be a constant and 2 ≤ N ∈ Z. By L2
(
K,CN

)
, we denote the set of all

vector-valued functions f(x) i.e.,

L2
(
K,CN

)
=
{

f(x) =
(
f1(x), f2(x), . . . , fN (x)

)T
: x ∈ K, f`(x) ∈ L2(K), ` = 1, 2, . . . , N

}
where T means the transpose of a vector. The space L2

(
K,CN

)
is called vector-

valued function space on local fieldK of positive characteristic. For f(x) ∈ L2
(
K,CN

)
,∥∥f∥∥ denotes the norm of vector-valued function f and is defined as:

∥∥f∥∥
2

=

(
N∑
`=1

∫
K

∣∣f`(x)
∣∣2dx)1/2

. (2.5)

For a vector-valued function f(x) ∈ L2
(
K,CN

)
, the integration of f(x) is defined

as: ∫
K

f(x)dx =

(∫
K

f1(x)dx,

∫
K

f2(x)dx, . . . ,

∫
K

fN (x)dx

)T
.

Moreover, the Fourier transform of f(x) is defined by

f̂(ξ) =

∫
K

f(x)χξ(x) dx.

For any two vector-valued functions f ,g ∈ L2
(
K,CN

)
, their vector-valued inner

product 〈f ,g〉 is defined as:

〈f ,g〉 =

∫
K

f(x)g(x) dx. (2.6)

Definition 2.1. Let K be a local field of positive characteristic. A vector-valued
multiresolution analysis (VMRA) of L2

(
K,CN

)
is a sequence of closed subspaces

{Vj : j ∈ Z} of L2
(
K,CN

)
satisfying:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2

(
K,CN

)
;

(c)
⋂
j∈Z Vj = {0}, where 0 is the zero vector of L2

(
K,CN

)
;

(d) f(·) ∈ Vj if and only if f(p−1·) ∈ Vj+1 for all j ∈ Z;
(e) there is a function Φ ∈ V0, called the scaling vector, such that{

Φ
(
x− u(k)

)
: k ∈ N0

}
forms an orthonormal basis for V0.

For j ∈ Z, we define an MRA space Vj ⊂ L2
(
K,CN

)
as

Vj = span
{
Φ
(
p−jx− u(k)

)
: k ∈ N0

}
, j ∈ Z.

Since Φ =
(
ϕ1, ϕ2, . . . , ϕN

)T ∈ V0 ⊂ V1, there exists constant sequence {Gk : k ∈
N0} such that

Φ(x) =
√
q
∑
k∈N0

Gk Φ
(
p−1x− u(k)

)
. (2.7)

Taking Fourier transform on both sides of (2.7), we obtain

Φ̂(ξ) = H0(pξ) Φ̂(pξ), (2.8)

where

H0(ξ) =
1
√
q

∑
k∈N0

Gk χk(ξ). (2.9)
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Since χk is an integral periodic function on K, we have for any s ∈ N0

H0

(
ξ + u(s)

)
=

1
√
q

∑
k∈N0

Gkχk
(
ξ + u(s)

)
=

1
√
q

∑
k∈N0

Gkχk(ξ) = H0(ξ).

Hence, H0 is also an integral periodic function on K. Let Wj , j ∈ Z be the orthog-
onal complement of Vj in Vj+1. Then, there exists q − 1 vector-valued functions
Ψ`(x) ∈ L2

(
K,CN

)
, ` = 1, . . . , q − 1, such that their translations and dilations

form an orthonormal basis of Wj , i.e.,

Wj = span
{
Ψ`

(
p−jx− u(k)

)
: k ∈ N0, 1 ≤ ` ≤ q − 1

}
, j ∈ Z. (2.10)

Since Ψ` ∈W0 ⊂ V1, there exists q−1 constant sequences
{
G`k : k ∈ N0

}
such that

Ψ`(x) =
√
q
∑
k∈N0

G`k Φ
(
p−1x− u(k)

)
. (2.11)

By taking Fourier Transform, the refinement equation (2.11) becomes

Ψ̂`(ξ) = H`(pξ) Φ̂(pξ), (2.12)

where

H`(ξ) =
1
√
q

∑
k∈N0

G`k χk(ξ). (2.13)

We say q − 1 vector-valued functions Ψ1(x),Ψ2(x), . . . ,Ψq−1(x), are orthogonal
vector-valued wavelet functions associated with the orthogonal vector-valued scaling
function Φ(x) if they satisfy〈

Ψ`(x),Φ
(
x− u(k)

)〉
= δ0,k IN , k ∈ N0. (2.14)

and the family
{
Ψ`(x), k ∈ N0, 1 ≤ ` ≤ q − 1

}
is an orthonormal basis of the

subspace W0. Therefore, we have〈
Ψ`(x),Ψ`′

(
x− u(k)

)〉
= δ0,kδ`,`′ IN , 1 ≤ `, `′ ≤ q − 1, k ∈ N0. (2.15)

The following lemma, which will be used in next section, gives a characterization
in the frequency domain of an orthogonal vector-valued function f(x).

Lemma 2.2. [1] Let f(x) ∈ L2
(
K,CN

)
. Then f(x) is an orthogonal vector-valued

function if and only if∑
k∈N0

f̂
(
ξ + u(k)

)
f̂∗
(
ξ + u(k)

)
= IN , ξ ∈ K. (2.16)

The vector-valued wavelets associated with the vector-valued multiresolution anal-
ysis {Vj : j ∈ Z} on local fields of positive characteristic has been recently charac-
terized by Abdullah [1] in terms of the wavelet masks as:

Theorem 2.3. Let Φ(x) ∈ L2
(
K,CN

)
be the orthogonal vector-valued scaling

function of an VMRA {Vj : j ∈ Z}. Then, Ψ`(x) ∈ L2
(
K,CN

)
, 1 ≤ ` ≤ q − 1

as defined by (2.11) are the associated orthogonal vector-valued wavelet functions if
and only if

q−1∑
r=0

H0

(
p
(
ξ + u(r)

))
H`

(
p
(
ξ + u(r)

))∗
= 0, 1 ≤ ` ≤ q − 1, ξ ∈ K, (2.17)
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and

q−1∑
r=0

H`

(
p
(
ξ + u(r)

))
H`′

(
p
(
ξ + u(r)

))∗
= δ`,`′ IN , 1 ≤ ` ≤ q − 1, ξ ∈ K. (2.18)

3. Vector-valued Wavelet Packets on Local Fields

In this Section, we construct vector-valued wavelet packets associated with vector-
valued multiresolution analysis on local fields of positive characteristic. First of all,
we have the following theorem.

Theorem 3.1. Let Φ ∈ L2
(
K,CN

)
be such that

{
Φ
(
x− u(k)

)
: k ∈ N0

}
is an

orthonormal system in L2
(
K,CN

)
and let V = span

{
Φ
(
p−1x− u(k)

)}
. Let Ψ`(x)

and H`(ξ), 0 ≤ ` ≤ q−1, be the functions defined by (2.11) and (2.13), respectively,
and satisfying the conditions (2.17) and (2.18). Then,

{
Ψ`

(
x − u(k)

)
: 0 ≤ ` ≤

q− 1, k ∈ N0

}
is an orthonormal system. Also this system is an orthonormal basis

for V if and only if it is orthonormal.

Proof. Since Φ is the orthogonal scaling vector associated with an VMRA. There-
fore, by Lemma 2.2, we have∑

k∈N0

Φ̂
(
ξ + u(k)

)
Φ̂∗
(
ξ + u(k)

)
= IN , ξ ∈ K. (3.1)

Also, for 0 ≤ `, `′ ≤ q − 1 and k ∈ N0, we have〈
Ψ`(·),Ψ`′

(
· −u(k)

)〉
=
∑
r∈N0

∫
rD

H`(pξ)Φ̂(pξ)H`′(pξ)
∗Φ̂(pξ)∗χ(k, ξ)dξ

=

∫
D

∑
r∈N0

H`

(
p
(
ξ + u(r)

))
Φ̂
(
p
(
ξ + u(r)

))
H`′

(
p
(
ξ + u(r)

))∗
Φ̂
(
p
(
ξ + u(r)

))∗
χ(k, ξ)dξ

=

∫
D

q−1∑
s=0

H`

(
p
(
ξ + u(s)

)){∑
r∈N0

Φ̂
(
p
(
ξ + u(s)

)
+ u(r)

)
Φ̂
(
p
(
ξ + u(s)

)
+ u(r)

)∗}

× H`′

(
p
(
ξ + u(s)

))∗
χ(k, ξ)dξ

Using (2.17), (2.18) and (3.1), we obtain〈
Ψ`(x),Ψ`′

(
x− u(k)

)〉
= δ0,k δ`,`′ IN .

Hence,
{
Ψ`

(
x− u(k)

)
: 0 ≤ ` ≤ q − 1, k ∈ N0, x ∈ K

}
is an orthonormal system.

For any function f(x) ∈ V , there exists constant matrix sequences {Ck : k ∈ N0}
such that

f(x) =
√
q
∑
k∈N0

Ck Φ
(
p−1x− u(k)

)
. (3.2)
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Next, we claim that

Φ
(
p−1x− u(k)

)
= q2

q−1∑
`=0

∑
r∈N0

(
G`k−qr

)∗
Φ`

(
x− u(r)

)
. (3.3)

Now, we have

q2
q−1∑
`=0

∑
r∈N0

(
G`k−qr

)∗
Φ`

(
x− u(r)

)
= q2

q−1∑
`=0

∑
r∈N0

(
G`k−qr

)∗ ∑
s∈N0

Φ
(
p−1x− p−1u(r)− u(s)

)

= q2
∑
s′∈N0

{
q−1∑
`=0

∑
r∈N0

(
G`k−qr

)∗ (
G`s′−qr

)}
Φ
(
p−1x− u(s′)

)
= Φ

(
p−1x− u(k)

)
.

Keeping in view of the equations (3.1) and (3.3), it follows that the system{
Ψ`

(
x− u(k)

)
: 0 ≤ ` ≤ q − 1, k ∈ N0

}
forms an orthonormal basis for V . �

For n = 0, 1, . . . , the basic vector-valued wavelet packets associated with the
vector-valued multiresolution analysis on local fields of positive characteristic are
defined recursively by

Γn(x) = Γqσ+`(x) = q1/2
∑
k∈N0

G`k Γσ
(
p−1x− u(k)

)
, 0 ≤ ` ≤ q − 1, (3.4)

where σ ∈ N0 is the unique element such that n = qσ + `, 0 ≤ ` ≤ q − 1 holds.
Implementation of Fourier transform to (3.4) yields

(Γqσ+`)
∧

(ξ) = H`(pξ) Γ̂σ(pξ), 0 ≤ ` ≤ q − 1. (3.5)

Theorem 3.2. If {Γn(x), n ∈ N0} are the vector-valued wavelet packets associated
with VMRA {Vj : j ∈ Z} on local fields of positive characteristic. Then〈

Γn(x),Γn
(
x− u(k)

)〉
= δ0,k IN , k ∈ N0. (3.6)

Proof. We prove the theorem by induction on n. Since〈
Γ0(x),Γ0

(
x− u(k)

)〉
=
〈
Φ(x),Φ

(
x− u(k)

)〉
= δ0,k IN ,

and, hence the claim is true for n = 0. Assume that (3.6) holds for 0 ≤ n ≤ tν , ν is a
fixed integer. For tν ≤ n ≤ tν+1, we have tν−1 ≤ [n/t] ≤ tν . Let n = t[n/t] + `, 0 ≤
` ≤ q − 1. Then, by Lemma 2.2, we have〈
Γ[n/t](x),Γ[n/t]

(
x−u(k)

)〉
= δ0,kIN ⇔

∑
r∈N0

〈
Γ̂[n/t]

(
ξ + u(r)

)
, Γ̂[n/t]

(
ξ + u(r)

)〉
= IN .

(3.7)
By (2.18), (3.5) and (3.7), we have
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〈
Γn(x),Γn

(
x− u(k)

)〉
=

∫
K

Γ̂n(ξ) Γ̂n(ξ)∗ χ(k, ξ)dξ

=

∫
D

∑
r∈N0

H`

(
p
(
ξ + u(r)

))
Γ̂qσ

(
p
(
ξ + u(r)

))
H`
(
p
(
ξ + u(r)

))∗
× Γ̂qσ

(
p
(
ξ + u(r)

))∗
χ(k, ξ) dξ

=

∫
D

q−1∑
s=0

H`

(
p
(
ξ + u(s)

)){∑
r∈N0

Γ̂qσ

(
p
(
ξ + u(s)

)
+ u(r)

)
Γ̂qσ

(
p
(
ξ + u(s)

)
+ u(r)

)∗}
×H`

(
p
(
ξ + u(s)

))∗
χ(k, ξ) dξ

=

∫
D

q−1∑
s=0

H`
(
p
(
ξ + u(s)

))
H`

(
p
(
ξ + u(s)

))∗
χ(k, ξ) dξ

= δ0,k IN .

�

Theorem 3.3. Let {Γγ(x), γ ∈ N0} be the vector-valued wavelet packets associated
with VMRA {Vj : j ∈ Z} on local fields of positive characteristic. Then

〈
Γqσ+`(x),Γqσ+`′

(
x− u(k)

)〉
= δ`,`′ δ0,k IN , 0 ≤ `, `′ ≤ q − 1, k ∈ N0. (3.8)

Proof. By (2.14), (2.18) and (3.7), we have〈
Γqσ+`(x),Γqσ+`′

(
x− u(k)

)〉
=

∫
K

Γ̂qσ+`(ξ)Γ̂qσ+`′(ξ)
∗ χ(k, ξ) dξ

= q
∑
r∈N0

∫
rD

H`(ξ)Γ̂σ(ξ)H`′(ξ)
∗Γ̂σ(ξ)∗ χ (k, p−1ξ) dξ

= q

∫
D

H`(ξ)

{∑
r∈N0

Γ̂σ
(
ξ + u(r)

)
Γ̂σ
(
ξ + u(r)

)∗}
H`′(ξ)

∗ χ (k, p−1ξ) dξ

= q

∫
pD

q−1∑
s=0

H`

(
ξ + pu(s)

)
H`′
(
ξ + pu(s)

)∗
χ (k, p−1ξ) dξ

= q

∫
pD

δ`,`′IN χ (k, p−1ξ) dξ

= δ`,`′ δ0,k IN .

This completes the proof. �
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For the construction of vector-valued wavelet packets on local fields of positive
characteristic, it is necessary to show that their translates form an orthonormal
basis for L2

(
K,CN

)
. This is evident from the following theorem.

Theorem 3.4. Let {Γn(x), n ∈ N0} be the basic vector-valued wavelet packets as-
sociated with VMRA {Vj : j ∈ Z} on local fields of positive characteristic. Then
(i)
{

Γn
(
x− u(k)

)
: qj ≤ n ≤ qj+1 − 1, k ∈ N0

}
is an orthonormal basis of Wj , j ≥

0.
(ii)

{
Γn
(
x− u(k)

)
: 0 ≤ n ≤ qj − 1, k ∈ N0

}
is an orthonormal basis of Vj , j ≥ 0.

(iii)
{

Γn
(
x− u(k)

)
: n ≥ 0, k ∈ N0

}
is an orthonormal basis of L2

(
K,CN

)
.

Proof. We use induction on j. Since {Γn : 1 ≤ n ≤ q − 1} is the basic set of
vector-valued wavelets, the case j = 0 in (i) is trivial. Assume (i) holds for j. We
shall prove it for j + 1. By our assumption, the family{

q1/2Γn
(
p−1x− u(k)

)
: qj ≤ n ≤ qj+1 − 1, k ∈ N0

}
is an orthonormal basis of Wj+1. Let

En = span
{
q1/2Γn

(
p−1x− u(k)

)
: k ∈ N0

}
.

Then, we have

Wj+1 =

qj+1−1⊕
n=qj

En. (3.9)

By applying Theorem 3.1 to En, we obtain functions g`,n, 0 ≤ ` ≤ q − 1, where

ĝ`,n(ξ) = H`(pξ) Γ̂n(pξ), 0 ≤ ` ≤ q − 1, (3.10)

such that
{
g`,n

(
· −u(k)

)
: 0 ≤ ` ≤ q − 1, k ∈ N0

}
is an orthonormal basis of En.

Using equation (3.5), we obtain g`,n = Γqn+`. Since{
`+ qn : 0 ≤ ` ≤ q − 1, qj ≤ n ≤ qj+1 − 1

}
=
{
n : qj+1 ≤ n ≤ qj+2 − 1

}
. Hence,{

Γn
(
x− u(k)

)
: qj+1 ≤ n ≤ qj+2 − 1, k ∈ N0

}
is an orthonormal basis of Wj+1.

Thus we have proved (i) for j + 1 and the induction is complete. Part (ii) follows
from the fact that Vj = V0 ⊕W0 ⊕ · · · ⊕Wj−1, and Part (iii) from the following
decomposition

L2
(
K,CN

)
= V0 ⊕

⊕
j≥0

Wj

 .

�

4. The Direct Decomposition for Space L2
(
K,CN

)
In this section, we decompose the MRA-space Vj and wavelet space Wj by virtue of
a series of subspaces of vector-valued wavelets packets on local fields. Furthermore,
we present the direct decomposition for space L2

(
K,CN

)
.

For n = 0, 1, . . . and j ∈ Z, we define

Unj = span
{
qj/2Γn

(
p−jx− u(k)

)
: k ∈ N0

}
. (4.1)

Since Γ0 = ϕ is the scaling function and {Γn : 1 ≤ n ≤ q − 1} are the basic
vector-valued wavelets, we observe that

U0
j = Vj ,

q−1⊕
`=1

U `j = Wj , j ∈ Z.
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Thus, the orthogonal decomposition Vj+1 = Vj ⊕Wj can be reformulated as

U0
j+1 =

q−1⊕
`=0

U `j . (4.2)

By virtue of (3.5), we can generalize the decomposition of Unj+1 into q-orthogonal
subspaces.

Proposition 4.1. For n ∈ N0 and j ∈ Z, we have the following formula

Unj+1 =

q−1⊕
`=0

U `+qnj . (4.3)

Proof. From (4.1), we have

Unj+1 = span
{
qj+1/2Γn

(
p−j−1x− u(k)

)
: k ∈ N0

}
. (4.4)

Let Pk(x) =
{
qj+1/2Γn

(
p−j−1x−u(k)

)
: k ∈ N0

}
. Then Pk forms an orthonormal

basis for the Hilbert space Unj+1. For 0 ≤ ` ≤ q − 1, let

A`σ(x) =
∑
k∈N0

H`
k−qσPk(x), σ ∈ N0, (4.5)

and

S` = span
{
A`σ : σ ∈ N0

}
.

Then, by Theorem 3.1, we have

Unj+1 =

q−1⊕
`=0

S`.

Therefore, equation (4.5) becomes

A`σ(x) =
∑
k∈N0

H`
k−qσPk(x)

=
∑
k∈N0

H`
k Pk+qσ(x)

= q(j+1)/2
∑
k∈N0

H`
k Γn

(
p−j−1x− (u(k) + u(qσ))

)
= q(j+1)/2q1/2

∑
k∈N0

H`
k Γn

(
p−jx− (u(qk) + u(σ))

)
= qj/2

∑
k∈N0

H`
k Γn

(
p−jx− (u(qk) + u(σ))

)
= Γ`+qn

(
p−jx− u(σ)

)
.



VECTOR-VALUED WAVELET PACKETS ON LOCAL FIELDS 19

Thus, we have

S` =

q−1⊕
`=0

Unj+1 and Unj+1 =

q−1⊕
`=0

U `+qnj .

This completes the proof. �

The above proposition can be used to obtain various decompositions of the
wavelet subspaces Wj , j ≥ 0.

Theorem 4.2. For j = 0, 1, . . . , we have

Wj =

q−1⊕
`=1

U `j =

q2−1⊕
`=q

U `j−1 = · · · =
qm+1−1⊕
`=qm

U `j−m = · · · =
qj+1−1⊕
`=qj

U `0 . (4.6)

Proof. The proof is obtained by repeated application of the previous proposition.
�

Theorem 3.2 can be used to construct various orthonormal bases of L2
(
K,CN

)
.

Let S ⊂ N0 × Z. We want to characterize the sets S such that the collection

F =
{
qj/2Γn

(
p−jx− u(k)

)
: k ∈ N0, (n, j) ∈ S

}
will form an orthonormal basis of L2

(
K,CN

)
. In other words, we are searching

those subsets S of N0 × Z for which⊕
(n,j)∈S

Unj = L2
(
K,CN

)
. (4.7)

Theorem 4.3. Let {Γn : n ≥ 0} be the basic vector-valued wavelet packets associ-
ated with a VMRA {Vj : j ∈ Z} and S ⊂ N0 × Z. Then F is an orthonormal basis
of L2

(
K,CN

)
if and only if {In,j : (n, j) ∈ S} is a partition of N0, where

In,j =
{
` ∈ N0 : qjn ≤ ` ≤ qj(n+ 1)− 1

}
.

Proof. By the repeated application of Proposition 4.1, we have

Unj =

q−1⊕
`=0

U `+qnj−1 =

q(n+1)−1⊕
`=qn

U `j−1 =

q(n+1)−1⊕
`=qn

[
q−1⊕
m=0

Um+q`
j−2

]

=

q2(n+1)−1⊕
`=q2n

U `j−2 = · · · =
q2(n+1)−1⊕
`=q2n

U `0 =
⊕
`∈In,j

U `0 .

Therefore, ⊕
(n,j)∈S

Unj =
⊕

(n,j)∈S

⊕
`∈In,j

U `0 .

Using Theorem 3.4(iii), we get

L2
(
K,CN

)
=
⊕
`∈N0

U `0 .

Hence, (4.7) holds if and only if {In,j : (n, j) ∈ S} is a partition of N0. �
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