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SIMPLE RANKED SAMPLING SCHEME: MODIFICATION

AND APPLICATION IN THE THEORY OF ESTIMATION OF

ERLANG DISTRIBUTION†
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Abstract. This paper deals in the study of the estimation of the parame-
ters of Erlang distribution based on rank set sampling and some of its modi-

fications. Here we considered Maximum Likelihood (ML) and the Bayesian

technique to estimate the shape and scale parameter of Erlang distribu-
tion based on RSS and its some modifications such as ERSS, MRSS, and

MRSSu. The derivation for unknown parameters of Erlang distribution is

well presented using normal approximation to the asymptotic distribution
of ML estimators. But due to the complexity involves in the integral, the

Bayes estimator of unknown parameters is obtained using MCMC method.

Further, we compared the MSE of estimation in different sampling schemes
with different set sizes and cycle size. A real-life data application is also

given to illustrate the efficiency of the proposed scheme.
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1. Introduction

Ranked set sampling (RSS) is designed for situations where measurements
are difficult to obtain but judgment ranking of a set of sampling units is fairly
easy and reliable. It utilizes information gained without formal measurement to
provide more structure to the final measured data as compared with the usual
simple random sampling (SRS). Such an approach is applicable in environmen-
tal and agricultural issues, where it is clear that pre-sampling judgment can be
quite cheap relative to the cost of detailed measurement of many quantities of
interest. Ranked set sampling (RSS), introduced by [23], is a technique designed
for situations where the sampling units are difficult or expensive to measure, but
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can be easily ordered by some means without actual quantification. [28] study
the Keplan-Meier estimator of survival probability based on the RSS scheme
under random censoring time setup while [21] used the estimator for estimating
an extension of the well-known stress strength reliability in a non-parametric
setup and compare it with the parametric analogous in the case of the expo-
nential distribution. A logistic regression model was proposed by [10] to aid in
the ranking of a binary variable of interest. [20] discussed in detail the goodness
of fit tests of Laplace distribution based on sample entropy when the data are
collected according to some ranked set sampling-based scheme.
A continuous probability distribution that has a wide range of applications and
a strong relationship with exponential and Gamma distribution is known as Er-
lang distribution. It was developed by [11] to determine the number of telephone
calls at the time of switching station operators. It can be expressed by the length
of messages and waiting time in telephone traffic. If the exponential distribution
is expressed as the individual call’s duration, then the Erlang distribution is ex-
pressed as the succession of the call’s duration. The Erlang distribution becomes
Gamma variate when a shape parameter is an integer form [16]. [13] used two
prior densities to obtain its Bayes estimator. The problem raised at the time
of Bayesian parameter estimation of Erlang distribution was addressed by [16].
A simulator design was constructed of the project management process for time
estimation [29]. The expected time between failure measures was obtained by
[12]. In addition, they showed that the estimated failure time and actual failure
time are approximately the same. Further, [17] investigated the procedure of
computing the median asymptotic expansion of the Erlang distribution. The
pdf and cdf of Erlang distribution are given by

g(x; θ, k) =
θkxk−1e−θx

(k − 1)!
(1)

G(x; θ, k) = 1−
∑
n

1

n!
e−θx(θx)n (2)

Where θ and k are rate and shape parameters respectively, such that x is an
integer number. If the shape parameter is 1, then the Erlang distribution be-
comes an exponential distribution. If the scale parameter is 2, then the Erlang
distribution becomes the Chi-square distribution. Basically, the sub-models of
the Erlang distribution are exponential and chi-square distribution. Moreover,
the gamma distribution is a generalized form of Erlang distribution. The pdf
curve of the Erlang distribution is shown in Figure 1. In this paper, we presented
well-known sampling schemes like Simple random sampling, Rank set sampling
and some of its modifications including Median ranked set sampling, Extreme
rank set sampling, and Maximum rank set sampling scheme with unequal sam-
ples size for Erlang distributions. The main purpose of this paper is to compare
the estimators that are based on different sampling schemes, Simple random
sampling, Rank set sampling, Median ranked set sampling, Extreme rank set
sampling, and Maximum rank set sampling scheme with unequal samples size
for Erlang distributions. In section 2, our focus is to derive Erlang distribution
parameters based on the above-mentioned schemes by using Maximum Likeli-
hood Methods (ML). Further in the subsection, the Bayesian technique is used
to obtain the point estimator of Erlang distribution parameters. For this, we



Simple Ranked Sampling Scheme 451

used three different loss functions that are PLF, SELF, and LELF. The explicit
form of an integral using Bayes point estimate cannot handle easily. So instead
of derivations, we use the Metro polio Hasting within Gibba (MHG) algorithm
to solve this problem.
The rest of the article is organized as follows. The parameter estimation using
maximum likelihood estimation and Bayesian techniques are presented in section
2. In section 3, a simulation study is carried out to check the performance of
different sampling schemes for maximum likelihood and Bayesian methods. It
also considers real-life data set to further check the performance of the proposed
estimator in section 4. Finally, our conclusion and remarks are presented in
Section 5.

2. Parameter Estimation under different sampling scheme

In this section, we use two different methods for parameter estimation of
Erlang distribution. The first method comes from a classical approach which was
established by Fisher around about 1930. Alternatively, the Bayesian approach
is used which was first discovered by Reverend Thomas Bayes. Moreover, we
have used one prior and three loss functions, which are elaborated on in their
respective sections.

2.1. Maximum Likelihood Estimation Method. The most commonly used
method is maximum likelihood estimation method, which was first discovered
by Gaurs. In early 1920, Fisher later used in a series of paper to estimate
parameters. It is the only method that gives sufficient estimators, which are
known to be asymptotically MVUES. Therefore, the most important feature of
this method is to take a random sample and then pick a maximum probability
of an observed data. In this way, we can easily find the value of unknown
parameter.

2.1.1. Parameter Estimation under RSS. RSS was the first time suggested
by [23] for estimating the population means. He stated that RSS gives more
precise estimators than SRS for estimating a population parameter. It is used in
conditions, where accurate measurements of sample units are hard to observe due
to high cost and more time utilization. For this reason, RSS may accurately rank
a set of sample units without considering cost and time. For more application
see [3, 9, 22] and references therein. Based on the same number of selected
observations, RSS is a more representative technique than any other probability
sampling technique. The following steps are used for the appliance of RSS:
1. Select ’m’ units each of ’m’ size.
2. Rank the units according to ascending order. The ranking is to be done with
respect to variables of interest without actual measurements.
3. Actual measurements are grabbed only on the largest ith units in the ith
sample. where i=1,2,......m.
4. Repeat the above steps ’r’ times to get n∗ = r.m∗

The developed sample is represented by X(i:m)j where ith unit is the largest unit
in the jth cycle in a set of size ’m’. The resulted function of RSS is given by the
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following equation (see e.g. [1])

gx(i:m)i(x(i:m)j) =

r∏
j=1

m∏
i=1

m!

(i− 1)!(m− i)!
Gi−1(x(i:m)j)[1−G(x(i:m)j)]

m−ig(x(i:m)j) (3)

LRSS(k, θ;x) =
r∏

j=1

m∏
i=1

m!

(i− 1)!(m− i)!
[1−

∑
n

1

n!
e−θx(θx)n]i−1[1−

∑
n

1

n!
e−θx(θx)n]m−1

∗
θnk

(k − 1)!
[

r∑
j=1

m∑
i=1

x(i:m)j ]
k−1exp[−θ

r∑
j=1

m∑
i=1

x(i:m)j ]

(4)

LRSS(k, θ;x) =
θnk

(k − 1)!

 r∑
j=1

m∑
i=1

x(i:m)j

k−1

exp[−θ
r∑

j=1

m∑
i=1

x(i:m)j ]
r∏

j=1

m∏
i=1

m!

(i− 1)!(m− i)!

∗ [1−
∑
n

1

n!
e−θx(θx)n]i−1[1−

∑
n

1

n!
e−θx(θx)n]m−1

(5)

LRSS(k, θ;x) =
θnk

(k − 1)!

 r∑
j=1

m∑
i=1

x(i:m)j

k−1

exp[−θ ∗[1− ζij ]
i−1ζm−1

ij
(6)

where ζ =
∑

n
1
n!
e−θ(θx)n

lRSS = nklogθ − θ
r∑

j=1

m∑
i=1

x(i:m)j + (k − 1)
r∑

j=1

m∑
i=1

x(i:m)j + log
r∏

j=1

m∏
i=1

m!

(i− 1)!(m− i)!

+ (i− 1)log[1− ζij ] + (m− 1)logζij + (k − 1)!

(7)

Taking derivatives w.r.t θ

dlRSS

dθ
=

nk

θ
−

r∑
j=1

m∑
i=1

x(i:m)j −
(i− 1)

1− ζij

(
nζij

θx
− xζij

)
+

(m− i)

ζij

(
nζij

θx
− xζij

)
(8)

After solving the above equation, we get

dlRSS

dθ
=

nk

θ
−

r∑
j=1

m∑
i=1

x(i:m)j +

(
(m− i)

ζij
−

(i− 1)

1− ζij

)(
nζij

θx
− xζij

)
(9)

Taking derivative w.r.t ′k′

dlRSS

dθ
= nlogθ − log

r∑
j=1

m∑
i=1

x(i:m)j +

(
−γ +

∞∑
c=1

k − 1

c(c+ k − 1)

)
(10)

The MLEs for the parameter θ and k are obtained by maximizing the log
likelihood in (7). This can be seen that on solving (9) and (10) equations simul-
taneously (and setting them is equals to zero), which do not have closed form
solution. Therefore, Newton Raphson method is used to obtain the estimates.
The algorithm consists of the following steps:
1. Set an initial guess (θ(0), k(0))
2. For iterations t ≥ 1, do the following
i. Estimate the slope S(θ, k) =

(
dlRSS

dθ , dlRSS

dk

)
at (θ(t−1), k(t−1))

ii. Estimate the observed Fisher Information matrix as I(θ, k) at (θ(t−1), k(t−1))
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iii. Upgrade parameter vector as (θ(t), k(t)) = (θ(t−1), k(t−1))+S(θ(t−1), k(t−1))×
I−1(θ(t−1), k(t−1))
where I−1 is the Inverse of Fisher information.
3. Repeat step 2 if |(θ(t), k(t))− (θ(t−1), k(t−1)| < 10−6 (threshold value).

4. The last iteration of MLEs of parameters (θ, k) denoted by ˆθML = ( ˆθML, ˆkML)
The asymptotic properties of MLE were used to get the confidence intervals of

parameters that is: ˆθML ≈ N(θ, I−1(θ, k)).
Here the MLE is asymptotically normal with the mean and variance-covariance
matrix are true parameter values and inverse of the observed fisher information
matrix respectively see e.g. [17] and I(θ, k) can be defined as:

I(θ, k) = −

(
d2lRSS

dθ2
dlRSS

dθdk
dlRSS

dkdθ
d2lRSS

dk2

)
(11)

Hence, a(1− α)100% confidence interval for Erlang distribution parameters are(
ˆθML ± Zα

2

√
ˆ

v( ˆ )θML

)
,

(
ˆkML ± Zα

2

√
ˆ

v( ˆ )kML

)
where Zα

2
is the standard nor-

mal distribution of α
2

upper quantile and
ˆ

v( ˆ )θML and
ˆ

v( ˆ )kML are diagonal elements of the inverse of
the observed Fisher Information matrix. The elements of (12) are as follows:

d2lRSS

dθ2
= −

nk

θ2
+ ζij

( n

θx
− x
)2 ( (m− i)

ζij
−

(i− 1)

1− ζij

)
+ ζ2ij

( n

θx
− x
)2( (n− i)

ζij
−

(i− 1)

1− ζij

2
)

(12)

d2lRSS

dk2
= −n

[
−γ +

∞∑
c=1

(
k − 1

c(c+ k − 1)

)]
(13)

dlRSS

dθdk
=

nk

θ
(14)

dlRSS

dkdθ
=

nk

θ
(15)

2.1.2. Parameter Estimation under SRS. Let x1, .., xn be a random sample
from Erlang Distribution with parameters k and θ . The likelihood and log-
likelihood are as followed:

LRSS(k, θ, x) =

(
θnk

(k − 1)!

)n m∏
i=1

xk−1
i e−θ

∑m
i=1 xi (16)

lRSS(k, θ, x) = nklogθ + (k − 1)

m∑
i=1

logxi − θ

m∑
i=1

xi − nlog(k − 1)! (17)

The parameters of θ and k can be estimated by equating the following equations

dlRSS

dθdk
=

nk

θ
−

m∑
i=1

xi (18)

dlRSS

dkdk
= nlogθ +

m∑
i=1

logxi − n

(
−γ +

∞∑
c=1

k − 1

c(c+ k − 1)

)
(19)
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As the above equations do not have a closed-form solution, for the Newton-
Raphson method is used. The elements
ofI(θ, k) are as follows:

d2lRSS

dθ2
= −

nk

θ2
(20)

d2lRSS

dθdk
=

n

θ
(21)

d2lRSS

dkdθ
=

n

θ
(22)

d2lRSS

dk2
= −n

(
−γ +

∞∑
c=1

k − 1

c(c+ k − 1)

)
(23)

2.1.3. Boot-p Confidence Interval. In the case of a small sample size of n,
the Confidence Interval followed by Normal approximation may not work well.
An alternative way of the confidence interval is the Resampling method which
may give an accurate approximation. The most widely used resampling method
is known to be the bootstrap (Boot-p) confidence interval.

i. A random sample is selected from the population (RSS or SRS) and ˆθML is
obtained as discussed in eq (11).
ii. Using specific sampling scheme (RSS or SRS), a bootstrap random sample is

generated of Erlang distribution with parameter ˆθML

iii. The generated bootstrap parameter is denoted byθ̂∗ .

iv. The above(ii) and (iii) step is repeated N times to get θ̂∗1 , θ̂
∗
2 , θ̂

∗
3 , ......., θ̂

∗
N

v. For order estimate, the above estimates are arranged in ascending orders
ˆθ∗(1),

ˆθ∗(2),
ˆθ∗(3), .......,

ˆθ∗(N)

vi. A (1− α)100% confidence interval is thus obtained by100α
2 and 100(1− α

2 )
of bootstrap estimates.

2.1.4. Parameter Estimation under ERSS. In this section, parameter es-
timation of Erlang distribution of ML equation under ERSS will be obtained.
[27] was the first who proposed the modification of RSS, to estimate the pop-
ulation mean by considering only the maximum or minimum ranked unit from
each set. The following procedure is used for estimation under ERSS. The ”m”
random set of each of size ”m” units is selected from the population, then ranked
with respect to an interesting variable by inspection or any cost-free method.
For even or odd set sizes, the selection method may be changed. For the first
m = 2 sets in the case of even set size ”m”, the smallest ranked units are se-
lected whereas from the otherm = 2 sets, the largest ranked units are selected.
In the case of odd set size ”m”, for the first (m − 1)/2 sets, the smallest units
are selected whereas from the other (m − 1)/2 sets the largest units are se-
lected and for the rest of the sets ”median” is selected. The size of ERSS can be
increased by cycling the procedure ”r” times. Thus, we have n = mr sample size.

g1(uij , θ, k) = mf(uij , θ, k) [1− F (uij , θ, k)]
m−1 (24)

For an even set of size ”m”, the ERSS procedure and densities rolled into one,
the likelihood function of the parameter given U = u is as follows:
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LERSSθ(k, θ;u) =

r∏
j=1

m/2∏
i=1

g1(uij , θ, k)

r∏
j=1

m/2∏
i=m/2+1

g1(uij , θ, k) (25)

LERSSθ(k, θ;u)

=
θnk

(k − 1)!

r∏
j=1

m∏
i=1

(uij)
k−1e−θ

∑n
i=1 ui

r∏
j=1

m/2∏
i=1

(∑
mr

1

mr!
e−θuij (θuij)

mr

)m−1

∗
r∏

j=1

m∏
i=m/2+1

(
1−

∑
mr

1

mr!
e−θuij (θuij)

mr

)m−1

(26)

For odd set size, the likelihood function of the parameter given V = v can be
written as

LERSSθ(k, θ;u)

=

r∏
j=1

(m−1)/2∏
i=1

g1(vij , θ, k)

r∏
j=1

m−1∏
i=(m+1)/2

gm(vij , θ, k)

r∏
j=1

m∏
i=1

g(m+1)/2(vij , θ, k)
(27)

LERSSθ(k, θ;u)

= Emr θmrk

(k − 1)!

r∏
j=1

(m−1)/2∏
i=1

(vij)
k−1e−θ

∑n
i=1 vi

r∏
j=1

m−1∏
i=(m+1)/2

∗
(∑

mr

1

mr!
e−θvij (θvij)

mr

)m−1 r∏
j=1

m∏
i=1

(
1−

∑
mr

1

mr!
e−θvij (θvij)

mr

)m−1

(28)

where E = m!
((m−1)/2)!2

2.1.5. Parameter Estimation under MRSS. [22] proposed modification of
RSS, for estimating a population mean known as MRSS. He investigated that
MRSS is more efficient than SRS and provides an unbiased estimator in the case
of systematic distribution. The procedure for the selection of units is the same
as RSS in terms of random selection and order of each ”m” sets with respect
to interested variables. Median element is selected, if the set size ”m” is odd.
In the case of even ”m” sets, (m/2)th ranked units are selected from the first
m = 2 sets and (m + 2)/2 ranked units are selected from the remaining m=2
sets. A procedure may be repeated ”r” a number of times. For odd set size, let
O = Xi((m+ 1) = 2 : m)j, i = 1, . . . . . . ,m = 2; j = 1, . . . . . . ., r.
Then the likelihood function for the parameter

LERSSo(k, θ; o) =

r∏
j=1

m∏
i=1

g(m+1)/2(oij , θ, k) (29)

LERSSo(k, θ; o)

= Mmr θmrk

(k − 1)!mr

r∏
j=1

m∏
i=1

e−θ
∑n

i=1

∑n
j=1 oij

 n∑
i=1

n∑
j=1

oij

k−1

∗
(
1−

∑
mr

1

mr!
e−θoij (θoij)

mr

)(m−1)/2(∑
mr

1

mr!
e−θoij (θoij)

mr

)(m−1)/2

(30)
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For even set size ”m”, the likelihood function for parameter E = e is given as

LERSSe(k, θ; e) =

r∏
j=1

m/2∏
i=1

g(m+2)/2(eij , θ, k) (31)

LERSSo(k, θ; o)

= Mmr θmrk

(k − 1)!mr

r∏
j=1

m∏
i=1

e−θ
∑n

i=1

∑n
j=1 eij

 n∑
i=1

n∑
j=1

eij

k−1

∗
(
1−

∑
mr

1

mr!
e−θeij (θeij)

mr

)

∗
r∏

j=1

m/2∏
i=1

(
1−

∑
mr

1

mr!
e−θeij (θeij)

mr

)m/2−1(∑
mr

1

mr!
e−θeij (θeij)

mr

)m/2

(32)

where M = m!
m−2

2 !m2 !

2.1.6. Parameter Estimation under MRSSUs. [7] were the first who pro-
posed maximum ranked set sampling procedure with unequal samples. The
process of estimation based on MRSSUs is as follow:
1) ’n’ random sample is selected, where the jth sample contains ’m’ observations
(where1 ≤ j ≤ r)
2) then each sample observation is arranged in order of magnitude as
1 : V(1:1)1............................................ → U1 = V(1:1)1

2 : V(1:2)1...V(2:2)2............................ → U2 = V(2:2)2
.
.
r : V(1:r)r...V(2:r)r............................ → Ur = V(r:r)r

LMRSS(k, θ;u) =

m∏
i=1

r∏
j=1

jf(uij) [F (uij)]
j−i

(33)

LMRSS(k, θ;u)

=
θmr

(k − 1)!
e−θ

∑r
j=1

∑m
i=1 uij

m∏
i=1

r∏
j=1

j(uij)
k−1

[
1−

∑
mr

1

mr!
e−θuij (θuij)

mr

]j−i
(34)

2.2. Bayesian Estimation. In Bayesian inference, there are different ap-
proaches based on different interpretations. Among those, objective and sub-
jective Bayesian inferences are widely used [30] which used Bayesian methods
for data analysis. Popular approaches presented by [4] and [19]. Nowadays, an
updated version of Bayesian data analysis Markov Chain Monte Carlo techniques
is conferred by [5, 14] and [26]. Further, [2, 6] made a strong contribution to
this subject. In this approach, the probability is not a defined frequency of oc-
currences, rather it is based on a person’s belief given the available information.
To make inferences about the parameters, the rules of probability are used, and
parameters are considered random variables. The interpretation of parameters
must be based on the” Degree of Belief”. Bayes Theorem is then used by revising
these beliefs after getting the data about parameters. After analysis of the data,
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the posterior distribution is then estimated which gives relative weights to each
parameter. There are two sources of the posterior distribution, the prior distri-
bution, and the observed data. For inferences, not all but only the occurring
data set is used.

2.2.1. Prior Distribution. In Bayesian analysis, the prior distribution repre-
sents all the assumed or known information about the parameter. It is basically
based on a person’s judgment, belief, or a statement of degree of belief of pa-
rameters. The choice of prior distribution plays a vital role in Bayesian analysis.
The impact of prior can be estimated, by the reliability of posterior distribution
based on different choices of prior. A best prior still does not pay an impact
on the posterior, even if the data have sufficient information. If the posterior
distribution is highly dependent on prior, in this case, the data may not contain
sufficient information. Whereas the data may cover sufficient information if the
posterior is relatively constant over a choice of priors. Prior distribution may
be categorized as Proper Prior and Improper Prior. The prior distribution is
considered “proper” if it does not depend on data and integral or summation
equals to 1. Conversantly, it may be considered as improper, if it does not de-
pend on data and the distribution does not integrate or sum to 1. The gamma
prior distribution is given as

π(θ) ∝ θa1−1eb1θka2−1eb2k (35)

where a1, b1, a2, b2 are hyperparameters assumed to be 0.001. Bayesian inference
is then obtained based on the posterior distribution of parameter k and θ , given
the data ’s’. that is:

π(θ|S) ∝ l(θ|S)π(θ) (36)

where l(θ|S)π(θ) is the likelihood function.

2.2.2. Loss Function. In this paper, we used the following two loss function.
Laplace was the first who gave the concept of the Loss function, then [18] in-
troduced it. It is used to measure the ’error’ or ’loss’. Our aim is to choose an
estimator which makes this error or loss small or ideally choose an estimator that
has a small loss or risk. In this work, we have used two different loss function
which is widely used in Bayesian inferences. The well-known loss function is the
squared error loss function, defined as

L1(θ, θ̂) = (θ̂ − θ)2 (37)

It is symmetric in nature and distributes equal weights to both overestimation
and underestimation. Hence, it is not best in every situation. [18] founded
Linear-exponential Loss Function (LELF) reintroduced by [30] which is asym-
metric in nature, and is defined as

L2(θ, θ̂) = a
[
eb(θ̂−θ)− b(θ̂ − θ)2 − 1

]
(38)

where ‘a’ and ‘b’ are parameters of the linear exponential loss function. We
takea = 1, without loss of generality. In the case of a positive value of ’a’, over-
estimation becomes more serious than underestimation. Another loss function
introduced by [24] is the alternative asymmetric loss function known as the pre-
cautionary loss function. To avoid underestimation, this loss function is close to
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infinity near the origin. Hence, it gives a close estimation, in circumstances of
low failure rates are being estimated. When underestimation becomes a serious
problem, these estimators than very useful. The formula is given by:

L3(θ, θ̂) =
(θ̂ − θ)2

θ
(39)

where θ and θ̂ are actual and estimated values of the parameter.

2.2.3. Bayesian Estimation under SRS. Under SRS, the joint posterior
distribution of the parameterθ and k can be obtained by joining the likelihood
in eq(17) and prior in eq (32) via Bayes theorem. It can be written as

π(θ, k|x) ∝
π(θ|k)LSRS(θ, k, x)∫ ∫
π(θ|k)LSRS(θ, k, x)dθdk

(40)

by finding the posterior, one can obtain the Bayes estimator using the above
posterior, that is

ĝ ∝
∫ ∫

π(θ, k|x)dθdk (41)

The above explicit form of integral is complicated to solve. Therefore, we may
use the ’Markov Chain Monte Carlo(MCMC) method to obtain Bayes estimate
of the parameter. To execute MCMC methodology from the joint posterior den-
sity π(θ, k|x), we consider the MHG algorithm to generate large samples. The
algorithm is intimate as follows:
Steps

1. Start with an initial guess (k0, θ0) = ( ˆkMLE.SRS , ˆθMLE.SRS)
2. For t = 1, choose a proposal Kernel from positive truncated Normal Distri-
bution N(k, θ, σ2)Ix>0

3. For t ≥ 1, calculate the acceptance ratio as:

a∗ =
π(θ∗, k∗|x)q(θt−1, kt−1)

π(θt−1, kt−1|x)q(θ∗, k∗)
(42)

Set (θt, kt) = (θ∗, k∗) with probability p = min(1, α∗ and otherwise set (θt, kt) =
(θt−1, kt−1)
4. For a large number of iterations say ’T’ set t = t + 1 and repeat step 3.
In our simulation, the proposal kernel is independent of the normal kernel. Its
mean and standard deviation is equal to the previously sampled value and

√
(I(−

1)) respectively, with a factor of 2.38/
√
d. Where I( − 1) is observed Fisher

Information space dimension. According to [15], we took d = 3. Further, we
noticed that the MHG algorithm does not produce a fast convergence rate due to
its association among parameters. Another algorithm developed by [8] is known
as differential Evolution M-H (DE-M-H). This algorithm overcomes the problem
of non-convergence and collinear parameters. It has the ability to run multiple
chains say N, which can be intimated through over-dispersed states. In each
chain, the proposed value takes information from the remaining two randomly
selected chains. In this process, chains get full information from each other.
This algorithm is executed as follows:
Steps

1. N chains are initiated as (θ
(0)
1 , ........, θ

(n)
1 )
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2. For t ≥ 1, calculate the acceptance ratio as:

a∗ =
π(θ∗, k∗|x)q(θt−1, kt−1)

π(θt−1, kt−1|x)q(θ∗, k∗)
(43)

The proposed model for the ith chain is defined as:

θ
(T )
t = θ

(t−1)
t + β(θ

(t−1)
j + θ

(t−1)
k ) + ϵ (44)

With probability, min(1, α∗) where θ
(t−1)
t is the preceding stages of the ith

chain, θ
(t−1)
j and θ

(t−1)
k are remaining two randomly selected chains without

replacement. This gives a guarantee that the chains are getting full information
from each other. Whereas ϵ belongs to N(0, σ) and σ2 is variance of observed
fisher information. The following posterior samples may be used to obtain the
posterior estimates and credible intervals as follow:

α̂β = (θ̂β , k̂β) (45)

where θ̂β =
∑∑

θt
i

T and θ̂β =
∑∑

kt
i

T

Moreover, the point estimator of θ̂β and k̂β can be calculated from posterior
samples.

2.2.4. Bayesian Estimation under RSS. Just like SRS, the joint posterior
distribution of parameter θ and k under RSS can be obtained by combining
the likelihood in eq (6) and prior in eq(32) using the Bayes theorem. Up to
normalizing constant, it can be written as:

π(θ, k|x) ∝
π(θ|k)LRSS(θ, k, x)∫ ∫
π(θ|k)LRSS(θ, k, x)dθdk

(46)

π(θ, k|x) ∝ θa1−1eb1θka2−1eb2k
θmk

(k − 1)!

mr

exp

−θ

r∑
j=1

m∑
i=1

x(i:m)j

 exp

 r∑
j=1

m∑
i=1

x(i:m)j

k−1

∗
r∏

j=1

m∏
i=1

[
1−

∑ 1

n!
eθx(θx)n

]i−1 [
1−

∑ 1

n!
eθx(θx)n

]m−1

(47)

The posterior mean can be obtained by using the above posterior as:

ĝ ∝
∫ ∫

π(θ, k|x)dθdk (48)

by using Bayes theorem,

ĝ ∝
∫ ∫

gπ(θ|k)LRSS(θ, k, x)dθdk∫ ∫
π(θ|k)LRSS(θ, k, x)dθdk

(49)

The above explicit form of integral is complicated to solve. Therefore, we may
use the ’Markov Chain Monte Carlo(MCMC) method as defined in the previous
section, to obtain Bayes’s estimate of the parameter.
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2.2.5. Bayesian Estimation under MRSSu. The Bayesian approach under
MRSSu can be obtained by combining the prior in eq (32) and the likelihood
function in eq(29), is given by

π(θ, k|u) ∝
π(θ|k)LMRSSu(θ, k, x)dθdk∫ ∫
π(θ|k)LMRSSu(θ, k, x)dθdk

(50)

π(θ, k|u) ∝
θmr

(k − 1)!
exp

−θ

r∑
j=1

m∑
i=1

 r∏
j=1

m∏
i=1

juk−1
ij

[
1−

∑
mr

1

mr!
e−θuij (θuij)

mr

]i−1

(51)

We use the DH-EM algorithm to generate the large samples form of complicated
joint posterior density π(θ, k|u) we do not state it here, as it is similar to the
Algorithm defined in SRS and RSS sections.

2.2.6. Bayesian Estimation ERSS under MRSS. The Bayesian approach
under ERSS and MRSS is similar to the estimation under SRS and RSS. The
only difference is the likelihood that LERSS and LMRSS is used in place of
LSRS for extreme rank set sampling and maximum rank set sampling separately,
respectively. The bayesian estimator of θMRSS , θERSS , kMRSS , kERSS are solved
by numerical method because of the complexity of integral.

3. Simulation study

For the support of this research, the Monte Carlo simulation study is con-
ducted on a perfect ranking setup. In order to illustrate the performance of ML
and Bayesian estimation methods based on different sampling schemes. Perfect
ranking setup is one of the fundamental assumptions of RSS, under which the
units in each sample are ranked without error. Many authors have tried to show
that their proposed techniques based on RSS remain valid or at least as effective
as those based on SRS when the assumption of perfect ranking is moderately
relaxed. As such, it is an ideal setup for practical situations. Comparison is
also made using different sets and sample sizes based on Bias and MSE. The
data were simulated from Erlang Distribution for each pair i-e.(θ = 0.5; 1) and
(k = 1; 2). Here we considered three sample sizes n = 25, 50, 100 for each set of
parameter values with set sizes (m=3, 4). Here n=25, 50, and 100 are considered
to be small, moderate, and large respectively. The finite number of iterations say
T = 2000 are generated using five kinds of schemes (SRS, RSS, MRSS, ERSS,
and MRSSu) for Erlang distribution. In this process of iteration, negative ML
estimates are excluded. Those iterations are also excluded which are unable to
find the roots of ML equations adequately. For Bayesian estimation, parameters
are estimated by using the MHG algorithm with different chains each having T
= 2000 iterations. For LELF, the values of ‘b’ are taken to be 1 and -1, and ‘a’ is
fixed to be 1. In the case of a small sample size, it is observed that the Bayesian
approach shows better results than MLE in terms of MSE. As the sample size
increases, the ML method acquires a smaller MSE than the Bayesian approach.
It is also observed under different sampling scheme for large sample size both
methods Bayesian and MLE tends to behave almost the same. Therefore, for
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small sample sizes Bayesian approach is recommended due to its better perfor-
mance than MLE. For moderation to large sample sizes, the ML approach is
recommended because of its simplicity and better convergence.

4. Real Data Example

This section aims to implement the method of statistical inference discussed
in the previous section through real data examples.

4.1. Data Set-I. We considered the data related to failure times for each of
23 ball bearings from the number of million revolutions, reported by [4]. The
individual bearings were examined periodically to check whether “Failure” had
occurred or not. The data in Table 8 are assumed to be our population and
number of times “Failure” are considered continuous. Lawless stated that Er-
lang distribution is suitable for modeling the mentioned data. To implement
the proposed estimation methods, we execute 1000 bootstrap samples that were
chosen to be with replacement from the data. We determined sample size and set
sizes are n = 10 and m = 3 and 4 respectively, with different sampling schemes.
Moreover, we had no prior information about parameters. Bayesian estimates
were obtained through MHG algorithm. Therefore, the ML and Bayesian esti-
mators were obtained by these procedures. The resulting MSE of estimators is
presented in Table 9.

4.2. Data Set-II. The second data set was previously used by [14]. It shows
the waiting time (min) of 100 bank clients before the service is being executed.
The summary of the data is shown in Table 1. The results of −2logL, Alkaike
Information Criteria (AIC), and Bayesian (BIC) are presented in Table 10.

Table 1. Summary of data on waiting time of bank clients

Min Max Mean Q1 Median Q3 Variance Kurtosis skewness

10.8 38.5 9.877 4.675 8.1 13.02 52.374 5.54 1.473

4.3. Data Set-III. The third data set formerly used by [14]. It illustrates the
lifetime of 20 electronic components. The summary of the data is given in Table
2. The results of -2logL, Alkaike Information Criteria (AIC) and Bayesian (BIC)
are presented in Table 11.

Table 2. Summary of data on electronic components

Min Max Mean Q1 Median Q3 Variance Kurtosis skewness

0.03 5.09 1.936 0.775 1.795 2.9 2.063 2.72 0.603

4.4. Data Set-IV. The fourth data set was previously used by [19]. It illus-
trates the remission time (Months) of 128 bladder cancer patients. The summary
of the data is presented in Table 3. The resulting comparison using different sam-
pling schemes based on log-likelihood, AIC, and BIC is shown in Table 11.
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Table 3: Summary of data on remission time of blood cancer pa-
tients

Min Max Mean Q1 Median Q3 Variance Kurtosis skewness

0.08 75.366 3.348 6.395 2.9 2.187 2.87 0.887 0.213

4.5. Data Set-V. The fifth data were previously used by [25]. It represents
an accelerated life test of 59 conductors, the summary is shown in Table 4. The
resulting comparison of sampling schemes is shown in Table 11.

Table 4: Summary of data on conductors
Min Max Mean Q1 Median Q3 Variance Kurtosis skewness

2.997 11.04 6.929 6.052 6.869 7.810 2.48 3.280 0.22

Table 5: A Confidence interval of MLE parameters estimates using
Normal and Bootstrapping method under SRS and RSS (θ = 0.5, k = 1)

n Samp. M Normal (θ) Normal (k) Bootstrap (θ) Bootstrap (k)

25 SRS 0.7316 0.6741 0.9891 1.1984

RSS 3 0.7265 0.6890 0.9910 1.1899

4 0.7198 0.6913 0.9900 1.1872

50 SRS 0.7180 0.7344 0.9812 1.1743

RSS 3 0.7216 0.7659 0.9806 1.1724

4 0.7209 0.7715 0.9815 1.1703

100 SRS 0.7114 0.9143 0.9716 1.1587

RSS 3 0.7123 0.9265 0.9734 1.1590

4 0.7016 0.9289 0.9701 1.1592

Table 6: A Coverage probability (CP) and of the MLE and Bayes
estimates under RSS and SRS for different sample sizes and different
set sizes when (θ = 0.5, k = 1)

n Samp. M MLE (θ) Bayes (θ) MLE (k) Bayes (k)

25 SRS 0.628 0.782 0.841 0.898

RSS 3 0.632 0.784 0.843 0.899

4 0.636 0.787 0.849 0.896

50 SRS 0.711 0.812 0.868 0.910

RSS 3 0.720 0.826 0.866 0.907

4 0.723 0.829 0.869 0.911

100 SRS 0.745 0.844 0.872 0.922

RSS 3 0.755 0.834 0.877 0.923

4 0.765 0.841 0.873 0.929
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Table 7: MSE of Erlang distribution through MLE and Bayesian
estimation under SRS, RSS, ERSS, MRSS and MRSSu (θ = 0.5, k = 1)
and n = 25

Samp. m MLE L1 L2 L2 L3 MLE L1 L2 L2 L3

SRS 0.1634 0.1359 0.1063 0.1742 0.1617 0.2192 0.2004 0.1942 0.1990 0.2015
MRSS 3 0.0859 0.0728 0.0524 0.0714 0.0706 0.2087 0.1895 0.1624 0.1789 0.1774

4 0.0819 0.0703 0.0600 0.0646 0.0621 0.2034 0.1745 0.1539 0.1734 0.1688
RSS 3 0.0903 0.0729 0.0628 0.0741 0.0725 0.2072 0.1834 0.1638 0.1767 0.1734

4 0.0911 0.0647 0.0575 0.0628 0.0751 0.2041 0.1801 0.1516 0.1762 0.1657
ERSS 3 0.1183 0.1174 0.0997 0.1129 0.1193 0.2153 0.1997 0.1774 0.1862 0.1909

4 0.1129 0.1194 0.1002 0.1136 0.1131 0.2149 0.1927 0.1729 0.1818 0.1876
MRSSu 3 0.1228 0.1209 0.1097 0.1149 0.1185 0.2184 0.1934 0.1839 0.1927 0.1837

4 0.1216 0.1190 0.1109 0.1173 0.1105 0.2177 0.1928 0.1769 0.1899 0.1821
SRS 0.1168 0.1112 0.1093 0.1139 0.1115 0.2127 0.2019 0.1837 0.2006 0.1899
MRSS 3 0.0627 0.0599 0.0318 0.0464 0.0465 0.1949 0.1734 0.1416 0.1678 0.1684

4 0.0534 0.0518 0.0268 0.0451 0.0448 0.1928 0.1705 0.1329 0.1663 0.1639
RSS 3 0.0692 0.0583 0.0413 0.0486 0.0516 0.1995 0.1762 0.1403 0.1671 0.1688

4 0.0576 0.0479 0.0328 0.0471 0.0483 0.1945 0.1725 0.1389 0.1658 0.1626
ERSS 3 0.0928 0.0937 0.0829 0.0719 0.0639 0.2064 0.1918 0.1609 0.1784 0.1708

4 0.0874 0.0863 0.0714 0.0713 0.0537 0.2073 0.1911 0.1587 0.1723 0.1693
MRSSu 3 0.0963 0.0847 0.0739 0.0839 0.0729 0.2038 0.1912 0.1619 0.1829 0.1710

4 0.0914 0.0729 0.0657 0.0795 0.0593 0.2018 0.1904 0.1600 0.1803 0.1700
SRS 0.0972 0.0925 0.0764 0.0817 0.0899 0.1132 0.1091 0.0936 0.1002 0.1103
MRSS 3 0.0105 0.0102 0.0083 0.0093 0.0086 0.1019 0.0096 0.0070 0.0099 0.0098

4 0.0095 0.0093 0.0074 0.0079 0.0081 0.0093 0.0086 0.0068 0.0087 0.0078
RSS 3 0.0116 0.0324 0.0091 0.0096 0.0074 0.1020 0.0099 0.0071 0.0096 0.0090

4 0.0100 0.0293 0.0078 0.0082 0.0069 0.0089 0.0082 0.0061 0.0078 0.0083
ERSS 3 0.0394 0.0289 0.0119 0.0254 0.0199 0.1939 0.0982 0.0318 0.0846 0.0748

4 0.0308 0.0264 0.0120 0.0219 0.0148 0.1912 0.0920 0.0310 0.0839 0.0652
MRSSu 3 0.0510 0.0305 0.0229 0.0329 0.0284 0.1898 0.0964 0.0327 0.0819 0.0829

4 0.0505 0.0300 0.0218 0.0316 0.0248 0.1823 0.0924 0.0313 0.0794 0.0739



464 R. Gulzar, I. Sajjad, M.Y. Bhat and S. Rehman

Table 8: MSE of Erlang distribution through MLE and Bayesian
estimation under SRS, RSS, ERSS, MRSS and MRSSu (θ = 1, k =
2, a = 1)and n = 25

Samp. m MLE L1 L2 L2 L3 MLE L1 L2 L2 L3

SRS 2.2183 2.1619 2.0948 2.1346 2.1298 3.3091 2.9827 2.1919 2.8494 2.8818
MRSS 3 2.0034 1.9790 1.6537 1.8864 1.9004 3.2878 2.6093 1.9964 2.5295 2.6018

4 2.0018 1.9346 1.5935 1.8413 1.8572 3.2739 2.4175 1.9875 2.4241 2.5005
RSS 3 2.0056 1.9728 1.6642 1.8341 1.8703 3.2826 2.6784 1.9942 2.6493 2.6506

4 2.0037 1.9501 1.5914 1.8701 1.8694 3.2655 2.5003 1.9979 2.5101 2.4976
ERSS 3 2.1098 2.0100 1.8093 1.8990 1.9819 3.2991 2.8265 2.0109 2.8109 2.7784

4 2.1001 2.0067 1.8000 1.8962 1.9398 3.2856 2.7904 2.0045 2.6485 2.7019
MRSSu 3 2.1075 2.1005 1.9513 1.9742 1.9002 3.2901 2.9150 2.0708 2.7859 2.8000

4 2.1006 2.0909 1.9348 1.9720 1.8909 3.2853 2.9109 2.0665 2.6316 2.7629
SRS 2.1993 2.1123 1.9792 2.1081 2.1067 2.1096 2.1036 2.1001 2.0930 2.0916
MRSS 3 1.9734 1.7450 1.3819 1.8100 1.8300 2.0832 1.8903 1.7170 1.8192 1.7340

4 1.9664 1.4811 1.1104 1.8035 1.8071 2.0701 1.8745 1.6923 1.6356 1.7112
RSS 3 1.9722 1.6995 1.4027 1.8069 1.9101 2.0816 1.8976 1.7209 1.7999 1.7363

4 1.9599 1.5540 1.2219 1.8014 1.8032 2.0792 1.8743 1.7175 1.6804 1.7172
ERSS 3 2.0937 1.8832 1.8184 1.8809 1.9832 2.1012 1.9804 1.9653 2.0014 1.9093

4 2.0911 1.7399 1.7966 1.7963 1.9709 2.0952 1.9713 1.9564 1.9328 1.8832
MRSSu 3 2.1090 1.9039 1.9003 1.8749 1.9856 2.0910 1.9852 1.9609 1.9908 1.9990

4 2.1023 1.8205 1.8044 1.8504 1.9605 2.0901 1.9801 1.9500 1.9704 1.8650
SRS 1.7681 1.6991 1.1029 1.5928 1.5929 2.1016 1.9934 1.7285 1.9543 1.9384
MRSS 3 1.0087 1.4843 0.9529 1.2983 1.3027 1.8735 1.7430 1.4643 1.6983 1.7121

4 0.9160 1.4277 0.8132 1.1164 1.1187 1.8700 1.6582 1.1485 1.4090 1.6230
RSS 3 0.9998 1.5003 0.9910 1.2872 1.3013 1.8790 1.7560 1.5003 1.6972 1.7190

4 0.9091 1.4325 0.8515 1.1109 1.1125 1.7935 1.6449 1.1253 1.5103 1.6304
ERSS 3 1.6631 1.5884 1.1011 1.4995 1.5135 2.0546 1.8840 1.6859 1.8376 1.8950

4 1.5639 1.5029 1.0984 1.4832 1.4364 2.0316 1.8794 1.6774 1.7965 1.8504
MRSSu 3 1.7490 1.5578 1.0943 1.5293 1.5024 2.0915 1.8929 1.7015 1.9203 1.9034

4 1.7279 1.5009 1.0853 1.5016 1.4925 2.0813 1.8648 1.6905 1.8370 1.9005

Table.9: Failure time of 23 ball bearings

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84

54.02 55.56 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40 67.80 51.96 0

Table 10: MSE of Erlang distribution for data set-I (n = 10, a = 1)

Samp. m MLE L1 L2 L2 L3 MLE L1 L2 L2 L3

SRS 0.0221 0.0210 0.0032 0.0219 0.0199 0.3132 0.1991 0.1053 0.1892 0.1793

M RSS 3 0.0193 0.0203 0.0028 0.0184 0.0176 0.1953 0.1862 0.1003 0.1527 0.1409

4 0.0186 0.0184 0.0019 0.0154 0.0132 0.1618 0.1764 0.0989 0.1339 0.1381

RSS 3 0.0192 0.0176 0.0028 0.0174 0.0172 0.2016 0.1790 0.1018 0.1530 0.1510

4 0.0173 0.0164 0.0014 0.0162 0.0151 0.1763 0.1668 0.0921 0.1401 0.1435

ERSS 3 0.0208 0.0200 0.0037 0.0199 0.0193 0.2947 0.2915 0.1027 0.1762 0.1669

4 0.0203 0.0198 0.0025 0.0183 0.0191 0.2189 0.2111 0.1013 0.1711 0.1590

MRSSu 3 0.0210 0.0203 0.0097 0.0200 0.0185 0.2190 0.2004 0.1050 0.1818 0.1769

4 0.0219 0.0211 0.0081 0.0201 0.0190 0.2278 0.2010 0.1021 0.1782 0.1723
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Table 11: MSE of Erlang distribution for data set-II(n = 10,m = 3)

Sampling Scheme -2log AIC BIC

54em Data-I SRS −193.377 398.478 402.484
MRSS -204.765 386.496 400.382

RSS -199.478 392.471 401.920
ERSS -200.070 382.289 402.206
MRSSu -189.023 395.381 410.478

54em Data-II SRS -33.198 81.293 110.247

MRSS -30.122 72.395 103.842
RSS -36.782 79.940 99.379

ERSS -34.441 73.202 103.480

MRSSu -39.128 80.190 108.476

54em Data-III SRS -683.294 639.604 1003.63
MRSS -672.485 623.189 1002.48
RSS -680.008 633.754 999.37

ERSS -671.479 620.489 999.590
MRSSu -684.093 636.464 1009.45

54em Data-IV SRS -44.92 143.68 203.58
MRSS -40.27 139.57 196.34

RSS -49.75 141.19 200.38
ERSS -39.83 138.20 194.05
MRSSu -40.38 149.58 202.74

5. Discussion and Conclusion

This paper studied estimation problems for Erlang distribution based on five
different sampling schemes namely Simple, Ranked Set Sampling, Extreme Rank
Set Sampling, Median Rank, and Maximum Rank Set Sampling of unequal sizes.
The estimation of unknown parameters was investigated using ML and Bayesian
approaches. Explicit forms are obtained by the ML method for both shape and
scale parameters. The Bayesian method is obtained under three different loss
functions namely Squared Error Loss Function (SELF), Linear Exponential Loss
Function (LELF), Precautionary Loss Function (PLF), and weakly information
prior that is Gamma Prior. MCMC method is used to get Bayes estimation of
unknown parameters due to the implicit form of integral. In Table 5, scale and
shape parameters are obtained through both ML and Bayesian estimation using
Gamma prior and Squared Error Loss Function based on all above- mentioned
sampling schemes. Comparisons are made based on the bias, mean square error
(MSE)(see tables 7 and 8), and coverage probability (CP) of confidence intervals
(see table 6). Different combinations of the parameter values are considered to
cover different shapes of the probability density function of the Erlang distri-
bution. Therefore, the conclusions were almost the same for all combinations
of the parameter values, the results of the two combinations are considered as
(θ = 0.5; 1) and (k = 1; 2).
Tables 7 and 8 illustrate the MSE of Erlang distribution based on MLE and
Bayesian methods using SRS, RSS, ERSS, MRSS, and MRSSu. In Table 11,
different sampling schemes are compared using log-likelihood, AIC, and BIC
criteria. The lowest AIC is considered to be the best. In our comparison, the
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RSS and ERSS are shown the lowest values of AIC and BIC and log-likelihood as
compared to other sampling schemes. Moreover, confidence interval construction
using bootstrapping plays better than one obtained using the normal approach.
Both techniques perform almost the same as the sample size increases. We con-
cluded from the study that the Bayesian estimation technique performs better
than ML techniques if the sample size is small. From moderate to large, the
ML estimation method performs better. Further, it is observed that the MSE
of MRSS is smaller than others like SRS and other modifications of RSS. This
showed that MRSS is more efficient than all other estimation schemes.
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