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Abstract. With the help of the generalised Beta function By, (z,y), we are able
to create a generalised version of Srivastava’s triple hypergeometric function H 4 (-)
associated with a numerical approaximation table in this paper, along with its
integral expressions. Furthermore, we list some of its key properties, including
the Mellin transform, a derivative identity, recurrence relations, and a bounded
inequality . We also provide some integral expressions of this generalised H4 p o (+)
function that use Meijers’s G-function, the product of the Macdonald and Gauss
hypergeometric functions. In addition, we compute a numerical approximation
table of this generalised hypergeometric function H 4 j, ., (-) with bounds by Wolfram
Mathematica and computer algebraic software or objected oriented programme.

1. Introduction, definitions and preliminaries

Many areas of mathematical physics; statistics, economics, and other disciplines have
a long history of using hypergeometric functions of a single variable. For the value of
w1, we € C, wy € C\Zg, the Gauss hypergeometric function is defined by [17]

2F1< wl,wz;z>:i“"1)n(w2)n” (|2 < 1). (1.1)

w3 e (wg)n n!

This hypergeometric-function extensions includes w; (1 < j < p,q), which also has so
many wide application; see [23].
The literature that is currently available on hypergeometric series includes this series
and its generalisations in a number of application-related branches of mathematics,
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This kind of series shows up in quantum field theory quite naturally. Especially when|
calculating analytical expressions for Feynman integrals. On the other hand, the use
of triple hypergeometric series known influences can really outcome in simplifications,
problems being solved, or better understanding of quantum field theory. Srivastaval
and Karlsson described and analysed a table of numerous 205 triple hypergeometric
functions in [22, Chapter 3|. Srivastava constructed a few complete triple hypergeometric
functions of the second order, denoted as Ha, Hp and Hc, see cites [19, 20]. It is well
known that Appell’s hypergeometric functions F; and Fy are generalised in He, Hp,
respectively, while F; and F, are generalised in H4. Also, Our work on Srivastava’s
triple hypergeometric function is motivated by the work given in [6, 7].

In this study, we focus on Srivastava’s triple hypergeometric function H,, which i
written as [19], [22, p. 43] and [21, p.68]

- (wl)i+k(w2)i+j(w3)j+k Zi Z% 2F
H ) ; 3 y 215 22, = TR AN 1.2
A(wlva w3, Wyq, W5, 21, 22 Z) ij;_o (w4)i(w5)j+k} il ]' L! ( )
=S (w1)itj (wa)ipr B(ws +4+ k ws — wy) 2 2] 2* (13)
(w4)i B(’LU37U)5 — ’(1)3) 'L' ]' k' ’ ’

i,5,k=>0

To simplify the process, we could indeed add the parameter s to H(+) in the form:

(m) . .
HA (wla W2, W3; Wy, Ws5; 21, 22, Z)

3 [(wl)iJrj (w2) ik B(ws + 1+ j + k,ws —ws +1) 21 25 2* (1.4)
i k>0 (’U)4)Z B(w37w5 — ’U)3) Z' ]' k}' '
it diminish to (1.3) for . = 0. The region of convergence for Ha(-) function ig

|z1] < Ri1, |22| < R2 and |z| < Rs, where Ry, Ro, R3 satisfy the relation Ry + Ry + R3 =
1+ R2Rs; see [10]. Here (w), (wyv € C) is the symbol for the Pochhammer’s rule (since
(1), = ml!), is usually defined by

T'(w+v) {1, (v="0; weC\{0}) (1.5)

W = 2@y = \ww+)(w+n—1), w=neN;weC),

and B(w,v) stands for the traditional Beta function as [13, (5.12.1)]
1
/ 11—l (Rw) > 0,R(0) > 0),
0

Bloe) (1.6)
[(w)I'(v) (R(w) < 0,R(v) <0), (w,v)€C\Zy).

Tlw =+ '1)) ’
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The Mellin-Barnes contour integral is used to define the Meijer’'s G-function [21,
p.45,eq.(1)]

m,n
Gp,q (

Wi, ooy Wy Wt 15 -5 Wp
U1y 05 Ums Um+-1, -+, Ug

R H H (1—wj+ p)
—i00 H F(l*UjJr,U) H F(w]*

j=m+1 j=n+1

- ~d 1.7
57 2Mdp,  (1.7)

where z # 0, and m,n,p,q are non negative integers such that 1 < m < ¢ ;0 <
n < p, and p < ¢q. The function (1.7) converges in the region |arg(z)| < 7k when|
Kk =m+n— %(p + ¢) and it is assumed that x > 0. The specific cases of Meijer’s
G-function was derived by C. S. Meijer [8, 21].

1 —z
2,1 5 o e KG(Z)
G715 (22 0. —a > = (1.8)
1 -2 K
G%% 22 2 :%7 (19)
’ a, —a V7 cos(ar)
2
2,0 [ # _o (A\M
GOQ ( 4 thLa ) u;a > =2 (2) Ka(z)7 (110)
2,1 p+ 3 €7 Kq(2)
2| 2 2 =5 111
I IS I B (1.11)
1 Ve Kq(z)
Gy (22 M2 =X L 1.12
2 ( | pta p—a (22)=# cos(arm)’ (1.12)
and
Gl - e (f)”K (2) (1.13)
256 Ia : 2+/i+a’ /J,Za’ 2+Z7a - 4 a 3 .

where (1 is a free parameter and in all these expressions we have z # 0. The o F} (-) series
is given an integral representation by [21, eq.(11)] and [23]

( w1, w2 > F(wS) /1 th—l(l _ t)u]g—’u}z—l
2 I 2z =
ws D(w2)T(ws — wa) Jo (1 — zt)wr

where R(ws) > R(wy) > 0 and |arg(l — 2)| < 7.

In cites [15] and [12], an another form generalised Beta function is presented. Al
Beta function is given by Chaudhry et al. [2, p.20, Eq.(1.7)] and they demonstrated
links between this generalisation and the Macdonald, error and Whittaker functions.
Additionally, Chaudhry et al. [3] generalised the 2 F;(-) hypergeometric function and its
integral form. The generalised Beta function B(ws;ws;p) has recently been extended
by Parmar et al. [16] by enhancing a parameter v, which is described by

— . wi—3 — w T2 p
By (w1, ws) = Bwy, we; p,v) \/>/ e ’ 2K +3 (t(l—t))dt’

(1.15)

dt, (1.14)
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where R(p) > 0, v > 0 and K, 1 (-) is the modified Bessel function of order vt3. Ifo=
0 in (1.15), then this function compress to B(w1, w2;p), whereas K (z) = (7/22)2e %,
Ozarslan and Ozergin [14] have expanded the double hypergeometric series F} (-), which|
is given by [1]

. , B ; ] _ i,
Fy (w1, w2, ws; 04321, 22) i= 3 (wa);(w3)i Blwy + i+ j,wy UII)ﬁZ'727 (1.16)
=0 B(wy,wy — wy) i !

where the region of covergence is |21] < 1 and |z3] < 1. We recently obtained anl
extension of Appell’s hypergeometric function Fi(-) and its integral expression, which
we denoted by F p.(-). This work was published in [6].

The following is the paper’s outline: Section 2 defines the generalised Srivastava’s triple
hypergeometric function Hy 5, ,(-) , and Section 3 presents integral expression for this
function. Sections (4-7) illustrate the key characteristics of the Hga p,(-) function,
including Mellin transforms, a differential formula, a bounded inequality, and recursion|
formulas. Section 8 makes a few closing remarks.

2. Generalized version of Srivastava’s triple hypergeometric function
HA,p,v(')

Srivastava invented the hypergeometric function H4(-) and its integral expressions;
for more information, see [18, 19, 21]. Based on the B, ,(wi,w2) function defined
in (1.15), the succeeding (p,v)-generalisation of Ha(-) function is being taken into
consideration. Theorem provides this as a result.

Theorem 2.1. Let the parameters wy, wa, w3 € C and wy, ws € C\Z; holds true. The

H g po(wi, wa, ws; wa, ws; 21, 22, Z)
k

4 i (w1)i45(w2)itr Bpo(ws +j + k, ws — ws) 2 z% z

—-——=— (2.1
i,5,k=0 (wa); B(ws, ws — w3) il jl k! (2.1)

where |z1| < R1, |22] < Ra and |z| < Rs, with Ry + Ry + R3 = 1+ RaR3 is the area of
convergence. When p = 0 = v, the above expression clearly compresses into itself as
classical function.

Example 1. In Table-1 we compute numerical approximation values of the
generalised Srivastava’s triple hypergeometric function (2.1) to Ha p(-) for different
parameter values v and p and set the range of indices upto 5th term for instance
i =j=k=05.

3. Some integral expression for Hy , . ()

Several authors investigate numerous integral expressions of the function Ha(:);
for examples, see [4, 5, 9]. In this part, we express a number of definitive integral
expressions of the Hy4 p,(-) function involving integrand as a product of algebraig
functions, Macdonold functions and Gauss hypergeometric functions. Additionally, some|
integral expressions involving the Meijer’s G-function are shown here
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TABLE 1. The numerical approximation table of a generalised function
Hapo() in (2.1) for distinct p and v values when parameters wq = 1/2,
we = 1/3, ws = 3/2, ws =4, ws = 7/2 and variables z =3, z1 = 1, 22 = 2.

p Lo THapo) | | v [Hi()]
0.051 0.10 | 0.06191 0.35 1 0.40 | 5.19325
0.10 | 0.15 | 0.09414 0.40 | 0.45 | 13.2543
0.15 | 0.20 | 0.15064 0.45 | 0.50 | 31.4599
0.20 | 0.25 | 0.29346 0.50 | 0.55 | 69.2934
0.25 1 0.30 | 0.71193 0.55 | 0.60 | 141.978
0.30 | 0.35 | 1.92484 0.60 | 0.65 | 271.426

Theorem 3.1. Let v > 0,R(w;) > 0(j = 1,3,4,5),R(p) > 0, RN(ws) > RN(ws) >
0, |arg(l — z2)| < 7 and |arg(l — z)| < w. Then the following integral expressions holds
true.

L(ws)
['(ws)T' (w5 — ws)

1
x \/Q*p/ 10373 (1 — 1)U (L ipt) T (1 — 2t) T2
™ Jo

p Wy, Wa;
X KU-{-% (t(l—t)) QFl < Wy Zl> dt, (31)

21
(1 — 29t)(1 — 2t)’

(i) Hap,o(wr,ws, ws; wy, ws; 21,22, 2) =

where

7 =

F(w4)F(w5)
T(wy)T(w3)T(wy — wy)T(ws — ws)
1
¢
0

2 [ P
X \/:/O 2 Kv—l—% (t(l—t)) dgdt, (32)

(hp = EW T (1 — )WL — )W T TR (1 — o) TN (1 — 2t) T2,

(i) Hapo(wy, wo,ws; wy,ws; 21, %9, 2) =

where

I'(ws)
[(w3)IM (w5 — ws)

2]7 ! w3y — 32 w1 +ws—ws —w —w
2 [ g ) )
0

(W) 2F1( wl;;_w?? 21A> ¢, (3.3)

(i12) HA po(wi,ws, ws; wa, ws; 21, 22, 2) =

x K,

1
2
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where Q) =14+ & — 206, Qo =1+&— 26 A= (slzirsgz);;

QF(W5)
T(ws) T (ws — ws)

(iv) Hapo(wi, we, ws3we, ws; 21, 22, 2) =
2£ 2. 2 s\w3z—1 2 s\ws—wz—1 _ .2 —wy _ .2 —wa
X (sin® &) (cos &) (1 = 298in” &)™ (1 — zsin“ &)
T Jo

p w1, W2;
<t (Gt )0 (™ 2) %

Z1

(1 — zosin? €)(1 — zsin?¢)’

where
7 =

oo I'(ws)
F(w3)r(1U5 — w3)

2p [P :
A2 o torio R @ar M A ac

(v) Hapo(wi,wa, ws; wy, ws; 21, 22, 2) =

where
B () S et I
(5 - ’Y)w5*w1*w2 -1 )
oo = (6 — fy)“ls_%(a — ’y)ws—w;;—%
(ﬂ - Oé)wS*uh*waz ;
o1 =[(B—a)(&—7)= 2B —7)(E—a),
oo =[(B—a)(€—7)—2(8—7)(&— )],
= P8 — @)2(€ — 7)?
@=1B -8B -NE—-a)’
A= B-a)E-2)"
and

T(ws)(1+4 \)we3
F(’W3)F(U}5 — ’(1)3)

2 [t .
x4/ £/ VAV VT K 1 (W) 2Fy ( Lt g 21) de,
™ Jo 2 W43

(Vi) Hapo(wi, W, ws; Wayws; 21, 22, 2) =

where ( ‘
v e Vi = (1426 — aa(1 4 Ve,
_ _ _ p(1+ X7 B
and

1+ )\5)2'

[1]

(3.4)

(3.5)

AW Wi
V1V
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Proof. The confirmation of the first integral expression (3.1) appears to follow by using
the generalised beta function (1.15) in (2.1), shifting the sequence of integration and
summation (since such integral is uniform convergence), and, after modification, using]
the Gauss hypergeometric function, to get the requried result (3.1). It is possible to
directly prove the integral expressions (3.2)-(3.6) by making use of the transformations
that are listed below:

_ & a1 _
e e ] (3.7
t =sin?¢, Z—ézZsinfcos{, (3.8)
,_(B-E—0a) di _ (B a)(f-)a—) N

(B—a)(&—n)" d¢ (B—a)E=7)? '
! L+Ne dt_ (142
1+ t 1+

S TOE & T LA 1)
one result at a time in (3.1) to get the right side. O

Theorem 3.2. Let R(p) > 0, R(w;) > 0 (j =1,3,4,5), R(wa) > R(w1) > 0 an
R(ws) > R(ws) > 0. Then the following integrals expressions holds true.

I(wa)T(ws)v/2p
I(w)T(ws)T(wg — wp)T(ws — ws)

Lt 2,1 2p
X/o/o f1~G1,2(t(1 )dgda (3.11)

—t)

(vit) Hapo(wi, we, ws; wy, ws; 21, 22, 2) =

1
2
v

1 _ 1
+3.7v—3

_ I(w4)T(ws) cos(wr)\/%
F(wl)F(wg)F(w4 — wl) Wy — 'LU3)

//fl ity

fr = €T R M T (L) (L gt) T (1zt) T exp (t(lp— t)) :

) dedt,  (3.12)

1 1
T3,V 3

where

T (wq)T(ws)(2p) *2
T(wy)T(w3)T(wy — wy)T(ws — w3)y/m

1 1 1
2p ’u)_|_,

" 'Gu( ‘ ; )ddt, 3.13

/o/of2 L2 \31 )| p+o+di, p—v—1 3 (3.13)

. r<w4>r<w5><p>f+%cos<w>
F(wl)F(wg)F(w4 — ’LU1 U)g) \/5

// f@ 2( t)‘u+v+§,#_v_§)d£dt, (3.14)

(viti) H g pp(wi, wa, ws; wy, ws; 21, 22, 2) =
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where

£, = gwl—ltwﬁuf%(17€)w47w171(17t)w57w3+/¢*%(1,22t)7w1(1—zt)*w2 exp <t(1p t)

and

F(w4)r(w5)p%—u2u—%
D(w)T(w3)T(wy — wy)T(ws — ws) /T

2

’ 1
r<w4)r(wr)4u—1(2p)%—u
(ws)T(wy — w1 )T (ws — w)ms

// -t (gt

where

f3 — §1u1—1t1u3+/1,—%(1 _ 5)11)4—11;1—1(1 _ t)wo—U)3+/L—7(1 N th) w1(1 _ zt)-U}Q

(ix) HA7p7v(w1aw2aw3§w47w5§2173272) =

242041 2ut2045 2u—2v—1 _2u=20+3 | d&dt,
g , 8 8 ; 8
(3.16)

larg(l — z2)| < 7 ,|arg(l — 2)| <7, v > 0 and p is a free parameter.

Proof. The integral expressions (3.11)-(3.16) that were discussed earlier can be obtained|
by substituting (1.8)-(1.13) into the expression of the- generic Srivastava function
H A po(-) found in (3.1). O

4. Mellin transforms for H, ;. (:)
Definition 4.1. If f(z;) is a locally integrable function on (0,00) , then the Mellin
transform of f(z;) is‘defined by [11, p.193]

B = MU o) = [ T ) e (4.1)

the strip of analyticity F < R(n) < F that characterises an analytic function. For the
given function (4.1), we can define its inverse Mellin transform as

1 d+io00
f(z1) = ML {B(n)} = / 19 ()d, (E < d < F). (4.2)

27(-1 —i0o

Theorem 4.2. The Mellin transform of the generalised function Ha . (-), takes fo
R(n) > v > 0. Then we have

o0
M {H 4 p (w1, ws, ws; wa, ws; 21, 22, 2) } (1) Z/ P H g o (wh, wo, w33 wa, wss 21, 22
0

2n—1 - +uv+1
:ﬁr<n2 )F(n 5 H (wy,ws, w3 w4, w53 21, 22, 2),  (4.3)

where wq, ws € C\Zgy and Hg”) is defined in (1.4)

z)dp,
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Proof. When the series (2.1) is substituted into the integral on the left side of (4.3), the|
order of integration is changed (due to the uniform convergence of the integral).

MA{H 4 p o (w1, wa, w33 wa, ws; 21, 22, 2) } (N)

(oo}

w1 )itri (W2 )itk o1 ok o .
= Z [(w4( 1) +J( 2) +k 7127 {/ ' pr7U(w3 +]+k,w5w3)}dp:|,
0

i,5,k=0 )1 B(ws,ws —ws) 4! j! k!

(4.4)

Utilizing the generalised Beta function (1.15) in the aforementioned equation (4.4) we
get

M {HA,p,v<wlvw2»w3; Wy, Ws; 21, 22, Z)} (77)
J k

VI 3 [ B

(1U3,U}5 ws) ! gl k!

1 e’}
ws+j+k—3 1— ws—w3z—3 71—%[( 1 P . (4.
<frtamnent{ [Tt (gt gl e

Tmplementation of the result [13, eq.(10.43.19)]

/OOO wn*%KaJr%(w)dw — on—3T (77 ; a) r (n +§+ 1) NR(@)] < R, (46)

executed by the replacement w = p/t(1 — t) in the preceding equation (4.5) produces

on—1 —v +v+1
MA{H 4 p (w1, wa, ws; wa, ws; 21, 22,2) } () = N r (77 ) r (77 ) X

T 2 2
ik
y Z |: wl 1+J(w2)z+k Zizéz{
_ 114l
e B(ws,ws —ws) ! jl k!

1
/ pwstithtn=1(] _ t)'”‘“‘“’””_ldt} } (4.7)

0

Using a simple Beta function(1.6) in the above equation (4.7), then we get after
simplification the right hand side stated in (4.3). O

Corollary 1./The inverse Mellin transform of Hga ., (+) function is given by

H o po (w1, wo, w3 wa,ws; 21, 22, 2) = M™H{®(n)}

d+1i00 n

v +v+1

B 121/7: <p> F<n 2 )F (77 5 ) HE (wy, wa, ws; wy, ws; 21, 22, 2)dn,
d—i00

(4.8

where d > v.

5. A derivative identity for Ha , ,(-)

Theorem 5.1. The derivative identity for the function Ha . (-) is as follows:
oItk (w1) 14k (W2) 145 (W3) 74K
021024 02K (wa) r(ws) s+ K
XHppo(wr +1+Kw+I1+Jws+J+Kjws+Lws+J+ K;21,20,2), (5.1)
where [, J, K € Ng

{Ha p,o (w1, ws, ws; wa, ws; 21, 22,2)} =
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Proof. The succeeding result is obtained by partially differentiating the series for
H = Hapo(wi, wo, ws; we, ws; 21, 22, 2),
in (2.1) with respect to z;.
i—1 J Lk

> wl i+j w2)l+k Bp U(w3 +] + k w5 — ’LU3) 2 22 Z
5.2
621 Z Z |: B(’(Ug,’ll)5 —’U)g) (Z—].) j' k' ( )

i=1 j,k=0

Employing an algebraic property (A)err = (A)e(A + £)k, we have upon setting i — i+ 1

OH - w1 Wr i |:(’LU1 + 1)i+j(w2 + ]-)iJrk Bp’v(wg +] + k‘,wg, — w3) Zl 22 k:|

0z wa im0 (wyg +1); B(ws, ws — w3) il gl k!
(5.3)
= w;}wz Hypo (w1 +1, w2 + 1, ws; wa+ 1,ws 521, 22, 2) (5.4)
4
Regular operation of (5.4) then yields for I =1,2,3, ...
a]
" () (wQ)IHAypyv (w1 + I, wy + 1, ws; wy +1,ws ;21,29 2). (5.5)

021 N (wq) 1

A similar thinking shows that (by differentiate partially with respect to z5 )

oy ~ (w1)1 (wa)r

02102 B (wq) 1
00 00 ’LU1 +I z+g(’w2+l)z+k pr(’u)3 +j+k w5 — wd) 22'71 Zk
) : (5.6)
i, k=0 j=1 (wg +1); B(ws, ws — ws) z' (j—1)! m

[Upon setting 7 — j + 1, we obtain

o1y _ (w1)r41 (wa)r (w3)

02102y (wy)r (ws)
- { wy + T 1)y j(wo+ Diyg Bpo(ws +1+ 5+ k,ws — 3)21,2%/“}
e (wy + 1); B(ws + 1, w5 — w3) i gl k!
(wi)i41 (w2)r (w3)

= Hppo(wi+14+1, wo+ 1, ws+1; wy+ 1, ws+1521,20,2).
(wa)r (ws)
(5.7

Reuse of (5.7) with J times then yields

oI ” (w1) 147 (w2)1 (w3)s
0210z (wa)r (ws)g

X Hapo(wr +1+J, we+ 1, wy+J; wy+Tws +J 5 21,22,2). (5.8)

Similarly, differentiate partially to the above eq. (5.8) with respect to z for the series
H 4 pv(-) as we have done before. Repeated differentiation K times with respect to z
then readily produces the requried result in (5.1) il
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6. An upper bound for Hy , . (:)

Theorem 6.1. Let the parameters w; € C(1 < j < 3) and the complex variables
21, 22, 2 € C, then the function Hap () is valid.

[H A po (w1, wa, ws; wa, ws; 21, 22, Z)|

2v|p‘v+1 1 (v)
< W)}%—HF ’U—|—§ H ' (wy, we, ws; wa, ws; |21], |22],]2]), (6.1)

where R(p) > 0, v > 0; parameters wy, ws € C\Zy and Hgv)(«) is defined in (1.4).

Proof. The modified Bessel function of the second kind has the following equation [13,
Entry (10.32.8)], which is connected to the integral expression of the extension H 4 5., ()
in (3.1).

VA (L)1

_ > —zt (42 v _
kypi(z) = o+ 1) /1 e *(t* — 1)¥dt, (v>—1, R(2) >0). (6.2)
(We have v > 0 and R(z) > 0 in our actual problem. Moreover, we allow = $(2) so
that
1
VA GEDTE
k ‘<27/ ztt2_11)dt
er%(Z) — F(’U—Fl) 1 € ( )

_VEGEDT /1t2uemdt: VA (312) " T2 + 1,2)

Flv+1) Jo ['(v+1) 2ol 7

The maximum value of the incomplete gamma function is I'(a, z) [13, (8.2.2)]. However,
while this result is computationally sharp'when z is real, the incomplete gamma function|
provides the integral for Hga p () really hard-to-bound. Make use of the minimal
inequality I'(2v + 1, z) < I'(2v + 1) to simplify (6.3).

kw%(z)’ A" (31) Frev+ _1 (2|Z>U+; r (v + ;) . (6.4)

I(v+1) x2vtl 2\ a2
when such gamma function duplication formula is used. The bound (6.4) is less sharp

than the bound (6.3). Even so, it can be more easily managed in the expression H4 p ., (+).
Put z = p/t(1—t) in the above formula (6.4), where ¢t € (0,1) and R(p) > 0, we achieve,

i)l <s () () e

For clarity, we will assume that the parameters w; > 0 (1 < j < 5) and easy to extend
to complex parameters. Then, from (3.1), we get
2¢[p|vtIT (v + 3)
VT{R(p) 2ot
x D (w1)itj (wo)irk B(ws +v+j +k,ws —wy + ) |21] |22) [2[*

(wa)s B(ws, w5 — ws) ik (6.6)

(6.3)

| H A po(wr, wo, w3; wy, ws; 21, 22, 2)| <

,3,k>0

Identify the above series by Hl(qv) (+) function, which is defined in (1.4), yielding the result

tated in the above upper bounded function (6.1) to H4 4 ..(-) [
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TABLE 2. The numerical approximation values of a generalised Srivastava’s
triple hypergeometric function (2.1) to Ha,p.(-) and the bound (6.1) for
distinct p and v values when indices i = j = k = 0; parameters w; = 1/2,
we = 1/3, ws = 3/2, wa =4, ws = 7/2 and variables z1 = 1, 20 = 2, z = 3.

P \ v \HA’p’U(-) \ Bound | p \ v \HA’p’U(-) \ Bound

0.05 | 0.10 | 0.0472012 | 1.21502 | 0.40 | 0.45 | 0.0702450 | 1.20064
0.10 | 0.15 | 0.0578520 | 1.22452 | 0.45 | 0.50 | 0.0678072 | 1.18942
0.15] 0.20 | 0.0646084 | 1.22944 | 0.50 | 0.55 | 0.0644989 | 1.13722
0.20 | 0.25 | 0.0688510 | 1.22944 | 0.55 | 0.60 | 0.0603955 | 1.16457
0.25 | 0.30 | 0.0712244 | 1.22572 | 0.60 | 0.65 | 0.0555585 | 1.15132
0.30 | 0.35 | 0.0720996 | 1.21923 | 0.65 | 0.70 | 0.0500386 | 1.13770
0.35 ] 0.40 | 0.0717172 | 1.21070 | 0.70 | 0.75 | 0.0438788 | 1.12382

In table-2, we compute a numerical approximation values/of this generalised hyper-
geometric function H4 , . () with bounds by Wolfram Mathematica software/computer
algebraic software/objected oriented programme.

7. Recurrence relations for H, , ,(:)

We prepare two recurrence relations for the extended Srivastava’s triple
hypergeometric function Ha , . (-) inthis section. The first process gives a recurrences
with respect to the numerator parameters w; and wsy, while the second provides
recurrence relations for the ‘extended Srivastava’s function with respect to the
denominator parameter w;.

Theorem 7.1. The recurrence relations for the Ha ;. (-) function with the numerato
[parameters wy and wy are as follows:

H g po (w1 + 1, wo, w3; was ws; 21, 22, 2) = Hapo(Wr, we, ws; wa, ws; 21, 22, 2) +
Z1W2

" HA,p,qj(wl + Lws + 1, ws;wy + 1, ws; 21, 20, 2) +
4
Z2Ws

" Hapo(wi + 1, we, wg + 1;wa, ws; 21, 22, 2), (7.1)
5

and

Hypo(wi,wy + 1, w35 ws, ws; 21, 22, 2) = Ha p o (w1, we, ws; wy, ws; 21, 22, 2) +
21w1
+

w HA,p,v(wl+1aw2+1,’LU3;'[U4+17’LU5;21722,Z)+
4
ZWs3

+

Hapo(wi,we + 1,wg + 1wy, ws; 21, 22, 2). (7.2)

243

O




- —— : - 05

Proof. In light of the fact that (2.1) and the subsequent result (wi +1);4; = (w1)i4;(1+
i/wy + j/wi), we derive

Hppo(wi + 1, we, w3; wa, ws; 21, 22, 2)

_ i (w1 + 1)i4j(w2) itk Bpo(ws + j + k,ws — ws) z} Zé 2k (7.3)
(w4)i B(U)g,’LU5 — ’wg) Z' ]' k' ’ ’

4,5,k=0

= Ha po(wi, wa, ws; wy, ws; 21, 22, 2)+

oo o XX

PIYY

[(wl)i+j(w2)i+k Bpo(ws +j+k,ws —ws) 2{7" 2 2K +
(wy)

i=1 j=0 k=0 B(ws, ws — ws) (t—1)! k!
L2 i i i (w1)isj(wa)ivk Bpow(ws 47+ k,ws —ws) 21 z z° (7.4)
W1 555 =1 ko (ws)s B(ws,ws — ws) il (G- k] :

Take a look at the first sum in (7.4), which will be denoted by the letter S from now
on. To find the answer, replace i — ¢ + 1 and use the identity (w);+1 = w(w + 1);.

§ =212 % [(wl + D (wa o Vi Bpo(ws 45+ s = W) 24,25 Zk] (7.5)

Wi R0 (we +1); Blws,ws —wg) 4 j! k!
zZ1w
= ; 2HA7P7U(U)1 + 1, we + 1, ws; we +1,ws; 21, 22, Z) (76)
4

Continuing along the same lines for the second series in (7.4) with j — j + 1, we arrive
at the conclusion that this sum can be represented as
Z2Ws

" Hy po(wr + 1, we, ws + 1; wa, ws; 21, 22, 2). (7.7)
5

The conclusion reached in (7.1) can be attained by first combining the findings from
(7.6) and (7.7) with those from (7.4).

In a similar manner, the proof of (7.2) can be obtained in the same manner by exchanging
wo and making use of the one more fact, which is described by

B(U)g,w5 —wg) = %B(w3+1,w5 —wg), (78)
3
Then we get after simplification the result stated in (7.2). O

Corollary 2. | Following is a recursion that is valid based on the given reference
(7.1).

H g po(w1 + Jyws, ws; wa, ws; 21, 22, 2) = Ha p o (W1, Wa, Ws; wa, ws; 21, 22, 2) +

J
z1b
+% Z HA,p,v(wl + Ea wa + 17w3; wy + 1,11)5; 21, %2, Z) +
4
(=1
Wszo <
222 Z Hapo(wi + £, wa, w3 + 13wy, ws; 21, 22,2). (7.9)

w,
5 =1

for positive integer J.
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for positive integer J.
Theorem 7.2. For the function Ha p.(-), the next recurrence holds correct with regar

to the denominator parameter wy

Corollary 3. Following recursion holds true according to the given equation (7.2)

Hy po(wi,wa + J,ws; wa, ws; 21, 22, 2)

H A p,o (w1, wa, w3 wa, ws; 21, 22, 2)
Proof. Look into the case in which wy is decreased by 1, to be specific

and use the identity (wy —1); = (w4);/{1 + W%l} Then

Hy po(wi, wa, ws; wa, ws; 21, 22, 2) +

J
21w
%Z Hypo(wi + 1, we + £ws;wy + 1, ws; 21, 22, 2) +
4
—1
ws 2 J
u?; Z HApv(w17w2+£ ’U)3+]. Wy, W55 21,22, % ) (7 10)
5
=1

+

Hap, (w1, wa, w3; wy + 1, ws; 21, 22, 2)
(7.11)

Z1W1W2
—H w1 + 1, we + 1, ws; wy + 2, ws; 21, 22, 2
wa(ws 1+ 1) Ap,o(W1 2 35 W4 55 21, 225 2)

3 - HA,p,v(wl»w%wB;wél - 1,w5;z1,22,z)

F= Y [(wl)i+j(w2)i+k By (w3 + j 4k, ws — w3) Zizgz’“}
§,J.k>0 (wq = 1) B(ws, ws — w3) il j1 k!
_ (w1)itj (Wa)itk Bpo(ws +4 4k ws — ws) i\ 22

o Z 1+ - v |
i,5,k>0 (w4)i B(w37w5 - ’LU3) wyg —1/) 4! 51 K!

=Hapo oW1, wa, ws; wy, ws; 21, 22, 2)

(w1) z+1 wz)z+k Bpo(ws +j + kws —ws) 27" 22" (12)
B(ws, ws — ws) (i— 1) 5 k! '

>y

w4 et k=0
[When we factor in ¢ — i+ 1 into the estimation given above, we get the following

3: - HA,p,v(w17w27w3; Wy, Ws; 21, 227 Z)

21 WiWs (w1 + 1)i+j(w2 + 1)i+k Bp7v(w3 + 7+ k,ws wg) Zl 22 2k
+——— ) S22 (7.13)
wy(wy — 1) Jdo (wg + 1), B(ws, w5 — ws) il g k!
= Hpp (w1, ws, ws; wa, ws; 21, 22, 2)
(7.14)

Z1W1wW2
Hypo(wr + 1w + 1, ws;wy + 1, ws; 21, 22, 2)

Wy (w4 — 1)
Afterwards, the result that is obtained by changing wy by ws + 1 can be found in|
[l

(7.11)
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Corollary 4. Following recursion holds true according to the given equation (7.11)

J
H A po (W1, wa, ws; wa + J, ws; 21, 22, 2) = E H A po(wr, w2, ws; wa + ¢, ws; 21, 22, 2)
=1
21 Wi W J
1W1W2
—— E Hapo(wr +1,we + 1, ws; wy + £, ws; 21, 22, 2f7.15
w4(w4 + 1)

£=2
for positive integer J.

8. Conclusion

A generalised Srivastava’s triple hypergeometric function Hy4 , ., (-) has been presented
here by us. In addition to this, we provided certain characteristics of this series, including]
the Mellin transforms, a derivative identity, a bounded inequality, and recurrence
relations. In addition, we have justified specific integral expressions of the function|
H A po(-) by involving Meijer’s G-function and Gauss hypergeometric functions in the|
process. In addition, we compute numerical approximation table of this generalised
triple hypergeometric function Hg4 . (-) with bounds by Wolfram mathematica software
/ computer algebraic software. The numerical approximation table for the upper bound
can also be used in computer algorithm programming, which is one possible application.
[Further, we can generalised Srivastava’s triple hypergeometric function to investigate]
certain problems, namely, to solve some differential equation, evaluate integrals, and
analyse certain physical phenomena.
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