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Abstract

Frames have very important and interesting properties which make
them very useful in the characterization of function spaces, signa
and image processing, sampling theory and many other fields.
An important tool for the construction of tight wavelet frames on
local fields of positive characteristic is the tool of unitary extension
principle. In this paper, we continue the study based on the extension
principles and give an explicit construction of a class of tight
affine frames as well as quasi-affine wavelet frames on local fields of
positive characteristic.

1. Introduction

The frame was first introduced by Duffin and Schaeffer [4] in the study
of non-harmonic Fourier seriesin 1952, reintroduced in 1986 by Daubechies
et a., and popularized from then on. Frames and their duals have very
important and interesting properties which make them very useful in the
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characterization of function spaces, signal and image processing, sampling
theory and many other fields. A frame is a family of elements in a separable
Hilbert space which allows stable not necessarily unique decomposition of

arbitrary elements into expansions of frame elements. A sequence {f} }}f:l

of elements of a Hilbert space H is called a frame for H if there exist
constants 4, B > 0 such that for all f € H,

Al £ <1 L P <BIFI3
k=1

where A and B are the lower and upper frame bounds, respectively. If
A = B, then the frame is called a tight frame. If 4 = B =1, then the frame
is called a normalized tight frame. The particular frames of interest to us will
be the frames in the space I’ (R) which are generated by the combined

action of dilations and translations of finite number of functions. In order
to describe these frames, for a, b € R with ¢ >1 and b > 0, we define

wavelet systems as
F(v, a,b)={y; = aj/z\u(ajx —kb): j, k e Z}.

Wavelet systems F(y, a, b) that form frames for I2(R) have a wide
variety of applications [3, 7]. Therefore, one of the fundamental problems in
the study of wavelet frames is to find conditions on , a and b such that the
system F(y, a, b) forms a frame. In 1990, Daubechies obtained the first
result on the necessary conditions for wavelet frames, and then in 1993, Chui
and Shi obtained an improved result. Cassaza and Christensen provided a
stronger version of Daubechies’s sufficient condition for wavelet frames
in 17 (R). In recent years, these conditions have been further improved and

investigated by many authors [15, 17, 20]. All these concepts are developed
on regular lattices, that is the translation set is always a group. Gabardo
et al. in [5, 6] have developed the concept of nonuniform wavelets on

I*(R). Here, the translation set is not a discrete subgroup of R, but a union
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of two lattices. Subsequently, nonuniform wavelet frames associated with
spectral pairs were constructed by Shah and Bhat [16] using the machinery
of Fourier transforms. In fact, they obtained necessary and sufficient

conditions for the nonuniform wavelet system to be a frame for 1 (K).
Recent results in this direction can also be found in [7, 9-17] and the
references therein. Separable and non-separable wavelet frames have been
widely studied by Pan and Wang [12]. Here, the authors have shown that
the tree-structured wavelet decomposition based on non-separable wavelet
frames has better performance than that based on separable ones.

Benedetto and Benedetto [1] constructed wavelets on some specific
groups G like p-adic rational group Q,,, Cantor dyadic group F2((¢)), etc.

You et al. [20] have provided a construction of new nontensor product
of wavelet filter banks for providing a blind watermarking scheme. Here,
they have utilised special symmetric matrices in the construction of these
nontensor product of wavelet filter banks that can capture the singularities
in all the directions. Here, in this paper, we concentrate on local fields. The
local fields have been deeply studied in [2, 15-18].

We turn to investigate tight affine, quasi-affine wavelet frames on local
fields of positive characteristic. The paper is organized as follows. Section 2
briefly introduces some notations of local fields needed throughout the
paper. Section 3 is devoted to the discussion of tight affine, quasi-affine
wavelet frames on local fields. Finally, Section 4 concludes the paper.

2. Preliminaries on Local Fields

A field K equipped with a topology is called a local field if both the

additive K* and multiplicative groups K* of K are locally compact Abelian
groups. The local fields are essentially of two types: zero and positive
characteristic (excluding the connected local fields R and C). Examples of

local fields of characteristic zero include the p-adic field Q p» Whereas local

fields of positive characteristic are the Cantor dyadic group and the Vilenkin
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p-groups. Even though the structures and metrics of local fields of zero
and positive characteristics are similar, their wavelet and multiresolution
analysis theory are quite different. In recent years, local fields have attracted
the attention of several mathematicians, and have found innumerable
applications not only to number theory but also to representation theory,
division algebras, quadratic forms and algebraic geometry. As a result,
local fields are now consolidated as a part of the standard repertoire
of contemporary mathematics. For more about local fields and their
applications, we refer to the monographs [13, 19].

Let K be a field and a topological space. Then K is called a local field

if both K* and K™ are locally compact Abelian groups, where K" and K"
denote the additive and multiplicative groups of K, respectively. If K is any
field and is endowed with the discrete topology, then K is a local field.
Further, if K is connected, then K is either R or C. If K is not connected,
then it is totally disconnected. Hence, by a local field, we mean a field K
which is locally compact, non-discrete and totally disconnected. The p-adic
fields are examples of local fields. More details are referred to [13, 19]. In

the rest of this paper, we use the symbols N, N, and Z to denote the sets of

natural, non-negative integers and integers, respectively.

The Fourier transform f of a function f e L' (K)N I (K) is defined
by

j© =] @@ @1
It is noted that

J© =] S = [ f0)u-gd.

Furthermore, the properties of Fourier transform on local field K are much

similar to those of on the real line. In particular, Fourier transform is unitary

on I*(K).
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We now impose a natural order on the sequence {u(n)}fzo. We have
D/B = GF(q), where GF(q) is a c-dimensional vector space over the
field GF(p). We choose a set {l = {y, &j, Cay oo G} © D such that

c—1 ~

span {Cj}jzo = GF(q). For n € N satisfying

0<n<gq, n=a0+a1p+-~-+ac_1pc_l, 0<a; <p, and

we define
u(n) = (ag + il + -+ ag_1Ce )P . (2.2)

Also, for n=by+bq+byg®>+-+byq’, neNy, 0<b <gq, k=

0,1, 2,.., 5, weset

u(n) = u(by) + (b )p~" + -+ u(by)p ™. (2.3)
Hence, u(n) for all n e Ny is defined. Generally, we cannot say that
u(m + n) =u(m)+u(n). But, if r,keNjy and 0<s < ¢, then u(rg® +s)
= u(*)p* + u(s). Moreover, we can verify that u(n)=0 if and only
if n =0 and {u(?)+u(k): k e Ny} = {u(k): k e Ny} for a fixed ¢ e N

From hereafter, we will use y,, = x,(,), n 2 0.

Consider the local field K to be of positive characteristic ¢ and let
Co> €15 €o, ..., C._1 be as above. Then the character y on K is defined as

follows:

_ exp(2mi/t), p=0and j =1,
G )= {; | 04
R p=1.,c—1lor j=l.

3. Affine and Quasi-affine Tight Frames

For jeZ and k € Ny, we define the dilation operator D; and the
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translation operator 7; as

Dif()=qf(p77 ) and Ty f() = f(-— k), f € I2(K).

Given j € Z, we have T, ;)D; = D J-Tp, Jou(r) Moreover, a space V is said

(k)

to be invariant under integer-shift if for any function f €V, I,/ eV for

jez.
A system X < I*(K) is said to be a tight frame for I*(K) if for any

f e I*(K),

| 712 = DS o)

*(K
geX
holds. This can be rewritten as

f=Y(f g [fel}K)

geX

Definition 3.1. Let ¥ :={y', y2 .., y’} be a finite family of

functions in I?(K). Then the affine system generated by W is the collection

X(¥)={y) s 1< U< Ly jeZ ke Ny},

where \Ifﬁ',k = qj/z\l/(lﬂ_j —u(k)) = DjTu(k)\Vﬁ‘

The wavelet symbols \411, \VZ, e \VL are called the orthonormal
wavelets whenever X (¥) forms an orthonormal basis of L*(K). These
symbols are called the tight framelets if the system X(¥) forms a tight
frame for L7(K).

The construction of tight framelets often starts with the construction of

MRA, which is built on refinable functions. A compactly supported function
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¢ € I>(K) is called refinable if it satisfies a refinement equation:

o(x) = ¢ > moly™'x — u(k) 3.1)

keNy
for some {h; : k € Ny} € 1>(Ny). The Fourier transform of (3.1) yields

0(&) = mo(pE)H(pE), (3-2)

where

mp(&) =g by ()

keNy

is an integral periodic function in 1? (D) and is often called the refinement

symbol of ¢. Given a refinable function ¢ € Z?(K) with ¢(0) = 0, the

sequence of subspaces {V/;} jez, defined by

V; = spanfo(p™/ —u(k)) : k € Ny},
will form an MRA for 1?(K). Recall that V; 1 j eZ} is called an MRA if
it satisfies: (i) V; < V;, forevery j € Z; (ii) UjeZ V; is dense in 12(K)
and (iii) ﬂjeZV' = {0}. In this paper, we only consider the refinable

function ¢ e I? (K) satisfying the following properties:

lim ¢(p/g) =1 forae. &eD

Jj—>®

and

> lae+utk) P =1 forae. &ed.

keNy

Given an MRA generated by the refinable function ¢, one can construct (see

[4]) a set of MRA-based tight framelets ¥ := {y', y?, ..., y’} c ¥ which
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is defined by

¥’ (8) = my(pE)d(pE), (3.3)

where

m (&) =g¢ > hr @), 1<r<L

keNy

are the integral periodic functions in I’ (D) and called the framelet symbols

or wavelet masks. The UEP gives conditions on my, my, ..., m; such that ¥

becomes a set of tight framelets with X (V) being a tight frame for L2(K).

Theorem 3.2 (Unitary Extension Principle). Let ¢ € L>(K) be such that

{o(-u(k)): k e Ny} is an orthonormal system. Let V = span{ql/ 20(p" - u(k))
/20! 1772y /

tkeNy}. Let m = q/ Zkzohkxk(é), 0<1<gq, where {h, k € Ny}

e (*(No) for 0 <1< q. Define (&) = my(pg)y(nE). Then {y;(- u(k)):

0 <1< gq, k € Ny} is an orthonormal system in V if and only if the matrix

-1
M (&) = (my(p€ + pu(k))] 41—
is unitary for a.e. & € ©. Moreover, {y;(-u(k)):0<1<gq, k e Ny} is an
orthonormal basis of V whenever it is orthonormal.

The deconvolution process has to be formulated by quasi-aftine systems.
We define the quasi-affine systems from a fixed level say J on local fields of

positive characteristic.

Definition 3.3. The quasi-affine system from level J, generated by W, is
defined as

)N(J(‘P):z{\uﬁ-,k:ISESL;jeZ,keNO},

where
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DT, v’ = ¢y (77 - —u(k)), jzJ;
~0
Vik =Y Jj=J

. J
J 5 —7 .
q 2 TpJu(k)Djwﬂ =dq Z\VK(P J('_pju(k)))s J < J.

The quasi-affine system can be obtained from oversampling the affine
system. This means that we oversample the affine system beginning from the
level J —1 and downward to a qJ -shift invariant system. Thus, the whole
quasi-affine system is a q‘] -shift invariant system. This system from level 0
was first introduced in [2].

In the present paper, we make use of quasi-interpolatory operator.

Let @ be the refinable function of the given MRA {VJ- } ez and ¥ := {\Vl,

\pz R \VL} c ¥ be the set of corresponding tight framelets obtained via
UEP. The quasi-interpolatory operator in the affine system X(¥) generated
by ¥ is defined as

Piif(x) o D (fr 0,000, 4(x), jeZ felX(K).

keNj

It is obvious that P;f (x) € V;. Moreover, the quasi-interpolatory operator

has the truncated representation
& 14 14
Q;: f() = D D A WiV k(x). >uel
=1 keN,
Furthermore, from the standard framelet decomposition, we have
& l l
P f(x) = Pif(0)+ 3, D (o wii)w) a(x) and
=1 keN,
ij(x) = ij(x). (3.4)

On considering MRA based on quasi-affine system X 7(¥) generated
by ¥, the spaces V., j < J in the MRA based on affine system will be



22 M. Younus Bhat

replaced by I7Jf], j < J for the quasi-affine system. Comparing with the

space V; spanned by functions ¢ , the space 17171, j < J is spanned by

the functions @ ; 4, where

DiT,y0 = ¢/ (077 - —u(k), jzJ
®jk =\ =t

o (3.5)
g2 TowPeo=a 2ok (—yu®), j<J

The spaces 171‘-], j<J are q‘] -shift invariant. Similar to the affine system,
we can define quasi-interpolatory operator 13]‘] and the truncated operator

Q}-], for the quasi-affine system as
B @ D (860840 (3.6)
keNj
and

L
O f(x) > D D Vi) Vuk(x), j>uel (3.7)

/=1 keNo

The quasi-interpolatory operator }N’J‘-] takes f of I’ (K) to I7J‘-/. From the
system (3.5), it is clear that 13]‘] = P; whenever j > J and these operators
differ only for the case j < J. Furthermore, for any f € [>(K) and j < J,
we have

B = %, 08,4 ()

keNy

J=J J=J
— E 2 2
- <f9 q TpJu(k)DJ(P>q TpJu(k)DJ(p(x)
keNy
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_ j-J-0
=g kZN: (. DyD_yT 5, POV DDy T 5 Djolx)
€lNo

j-J-0 j-J-0

=DJZ<D—Jf,q 2 ToDj—s0)g 2 TpJu(k)Dj—J(P(x)
keNy

50
= D;P;_yD_;f(x).

From the above system, it is clear that one needs to understand the case

J = 0 only. So, we simplify our notations by setting
= 7.0, = 8 and 7, = 7.

Thus, it will be sufficient to study the properties for IN’J- and the
corresponding spaces I7J associated with the quasi-affine system X (P) =
X o(¥). The results corresponding to the oversampling rate q‘]NO can be
obtained similarly. So, we consider the quasi-affine system X (P).

Theorem 3.4. Let X(¥) be the affine tight frame system obtained via
the UEP and X(¥) be the quasi-affine frame derived from X (W¥). Then for
all e I*(K), we have

L
Priaf(0) = Bif () + D0 D (W5 )W 4 (x). (3.8)
(=1 keN,

Proof. For j > 0, we have
~ ~( /
?k =DiT,)0 =0,k and y; i = DT,V =V i,
which yield

Pif(x)= D (fr 00005k (x) = D (f28;408,k(x) = Prf(x)

keNo keNo

and
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L
0,/ ()= > o vl v ()

=1 keNy
L
:Z Z /s \ij \VJ k(x)_Q]f(x)
=1 keNy
Using (3.4), we have

L
Praf(x) = P f(x) = Pif(x)+ D " (fowh vl ()

=1 keNy
5 & l l
= Bif () + Y D W)W k().
=1 keNy
Thus, (3.8) holds for j > 0. Let us now prove the result for the case j < 0.
We also denote ¢ by \410.

Using equations (3.1) and (3.3), we obtain

v () =g Y meo(p™x - u(k)). (3.9)

keNy

Equation (3.9) leads to

V.6 (x) = ¢/ Ty’ (p77)

=q’ +1Tu(k){ > (o - u(r))}

reNy

Z h” j+1 o(p Jj- 1(x u(k) - p1+1u(r)))

reNy

> g O ) ()

repj+1N0
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Let us define the dilated sequence hf by
L i+1xy -
o = hp-’“k’ ke p”" No;
J.k = i1
0, k¢ p/T'N,.

With the dilated sequence defined above, we have

~/ t ~0
\Ifj,k(x) = Z hy., j\lfj+1,k+r(x)-
reNy

Hence, the right side of the identity (3.8) can be written as

L
DD TV

fZOkGNO
L -
! ~0 ¢ ~0
= Z Z hr,j(fv \Vj+1,k+r> Z hs,j\Vj+1,k+s(x)
(=0keNy (reNy seNy

L -
- Z Z Z Z hlf,jhlf-i-s—r,j <f’ \TJ(J)'+1,r>\|Nf(J)'+1,s(x)-
reNy

seNg (/=0keNj

We first check

L

14 14
Z Z hk,jhk+s—r,j = 8O,r—S'

(=0keN,

When k-5 € pj”NO, then there exists v € N such that k —s =

pj *1y and we obtain

L - L -
DIDI U NEIED DY hlf,jh,f_pmv

fZOkGNO fZOkeNO

L -
ZZ Z hlf,jh,f_pjﬂv

/=0 kep/+1N0
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3 Y
=2, 2 by
=0 keN,
=98, y-
The sum is nonzero if and only if v =0, which is exactly r =s. If
k—se pj”NO, then there exist v, v, € Ny with v, ¢ Nj such that

k—s= ijvl + v, and we get

L - L N
DI I U NEED DY hlf,jh:_pjﬂvl_VZ

fZOkGNO /=0k€N0

L -
=3 > K f'h/f-pf“vl-vz'

(=0 keijNo

When k e ijNO, then k — pj“vl -Vvy) & pj“NO and h' | =0
k—pfr V1—Va

with last identity equalling 0. Hence, for the filters h}-, hjz-, e hJL- , we have

L _
D> hihi_y =8qy. veN (3.10)
(=0keN,
Hence, we get
3 0o\l ¢ ¢
D LT OT ) = D T ) k()
1=0keN, keN

= ﬁj+1f(x)-

This proves the identity for j < 0. Hence, the result holds for j € Nj,.
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Theorem 3.5. Let X(¥) be the affine tight frame system obtained via
the UEP and X(¥) be the quasi-affine frame derived from X (W¥). Then for
all f e I*(K), we have
Pif(x) =0,/ (x).
Proof. We first prove the result for the case j > 0. Since

Qi k=Dl =9 k>

Pif(x)= D (fr 00005k = D {f+8;,4)8,,4(x) = Pof(x).
keN, keN
We now show that Q;f(x) = ij(x), for j>0. As X(¥) is a tight
frame, X (W) is also a tight frame. Further, for j > 0, we have ik =
DTV = Vi k-
Hence, we obtain

L

S v v @)

(=1 j<0keN,

L
= f@) =200 D v ()

=1 j>0keN,

L
=2 DAL W ).

=1 j<0keN,

Therefore, for j > 0, we have

ij(x)

L L j
=D D Tk @)+ 2D D i) Wk ()
/=1

u<0keNg (=1u=0keNy
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L

L j
=3 vV D+ DD W) W k(%)

l=1u<0keNy l=1u=0keNg

Since P;f(x) = Q;f(x), we have IN’jf(x) = ij(x). This proves the result

for the case j > 0.

We now show that the result also holds for the case j < 0. Using

Theorem 3.4 inductively for j < 0, we have for any f e > (K),
Bif(e) =B )+ D >0 DAL W) W i (). (3.11)
l=lu=vkeN

Thus, the proof of the result reduces to the proof of IBV f(x) > 0 as

Vv — —00,

Since Ay is finitely supported, the integer shifts of ¢, provide a Bessel

sequence. Since

Bf(x)= > (. 50 1) (%),

keNy
the norm of P, f(x) satisfies
keNy

where the constant C is independent of v. We need to check the value

of | P, l;2(k) when fis supported on [-M, M] for some M > 0. By the

Cauchy-Schwartz inequality, we have, for v < 0 and | v | sufficiently large,

2
12 B2 ey < U ] . TP G.13)

Lz(K)
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where

E, = ) (c+p"[-M, M)).
keNy

As P,f(x) = 0 when v — —oo in (3.13), the identity (3.11) becomes

L
Pif(x)=Bf@)+ 2.2 DS Vs W k(%) = O; £ (x).

l=1u<jkeNy

This completes the proof of the theorem.
4. Conclusion

The Fourier transform due to its deep significance has subsequently been
recognized by mathematicians and physicists. Many applications, including
the analysis of stationary signals and real-time signal processing, make an
effective use of the Fourier transform in time and frequency domains. In this
paper, we extended the study based on the extension principles and provided
an explicit construction of a class of tight affine frames as well as quasi-
affine wavelet frames on local fields of positive characteristic. These results
provided a new way of construction of wavelet frames in terms of Fourier
transform. They also provided a way for obtaining a new characterization of
affine and quasi-affine wavelet frames in terms of low pass and high pass
filters.
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