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Abstract: In this study, the Wigner–Ville distribution is associated with the one sided Clifford–Fourier
transform over Rn, n = 3(mod 4). Accordingly, several fundamental properties of the WVD-CFT
have been established, including non-linearity, the shift property, dilation, the vector differential, the
vector derivative, and the powers of τ ∈ Rn . Moreover, powerful results on the WVD-CFT have
been derived such as Parseval’s theorem, convolution theorem, Moyal’s formula, and reconstruction
formula. Eventually, we deduce a directional uncertainty principle associated with WVD-CFT. These
types of results, as well as methodologies for solving them, have applications in a wide range of fields
where symmetry is crucial.

Keywords: Fourier transform; Clifford–Fourier transform; Wigner–Ville distribution; Moyal’s formula;
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1. Introduction

The Fourier transform is one of the most crucial fields in pure and applied mathematics.
Recently, the Fourier transform has been widely studied in integral transforms in the real,
complex or quaternion setting [1–3]. Brackx et al. [4] extended the Fourier transform
to Clifford analysis C l0,n, which is called the Clifford–Fourier transform (CFT). Some
characterizations of the CFT have been discussed [5], and its application in the vector
fields and vector-valued filters have investigated by Ebling and Scheuremann [6]. Various
types of CFT’s were intensively explored by many researchers. One of the most studied
and investigated versions of CFT is C l3,0 [6]. The geometric algebra of three-dimensional
Euclidean space R3 has been extended to n-dimensional Euclidean space Clifford algebras
C ln,0 [7–9], where some fundamental properties such as convolution, correlation, and the
uncertainty principle were obtained. Furthermore, some other properties of CFT C ln,0
where n = 3(mod 4) have also been proved, which involve linearity, scaling, shifting in
space and frequency domain, the vector derivative, the vector differential, and the Parseval
theorem. The directional uncertainty principle for C ln,0 has also been verified [5]. Some
authors presented the CFT differently, as in [10]. Hitzer in [11] proposed a new type of
CFT, which can be regarded as the general form of two-sided quaternion Fourier transform
(QFT) [12,13].

The Wigner–Ville distribution introduced by J.Ville can be described as one of the most
effective methods in detecting linear frequency-modulated (LFM) signals and parameter
estimation. The WVD plays a vital role in the analysis of non-stationary signals [14]. Hahn
and Snopek developed Fourier- Wigner distributions of 2D quaternion signals [15], and then
Bahri thoroughly discussed the 2D WVD associated with QFT [16]. Since then, tremendous
work has been done on WVD [17–20]. The idea of associating the WVD with the Clifford
algebra of n-dimensional Euclidean space Rn has not been explored yet. The main purpose
of this paper is to investigate the CFT and WVD and to derive the fundamental properties
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of the WVD associated with the CFT, which include linearity, scaling, shift property, vector
differential and derivative, parseval theorem, convolution theorem, correlation theorem,
Moyal’s formula, and the directional uncertainty principle.

The findings of our work can be best utilized in symmetry. The content of the current
paper is organized as follows. Section 2 displays basic notions and results on Clifford
algebra, which are needed throughout this study. In Section 3, the results regarding the
Clifford–Fourier transform in R3 are obtained and extended to Clifford–Fourier transform
in Rn, n = 3(mod 4). Section 4 deals with our main findings in detail, that is, the Wigner–Ville
distribution associated with Clifford–Fourier transform.

2. Preliminaries

Clifford Geometric Algebra C3 of R3

The geometric algebra over R3 denoted by C3 consists of a graded 8 = 23 dimensional
basis given by

{1, e1, e2, e3, e12, e23, e31, e123}

where {e1, e2, e3} is the orthonormal basis of the real 3D Euclidean vector space R3.
Here, 1 is the real scalar identity element of grade 0; e1, e2, e3 are the basis vectors of R3

having grade 1; e12 = e1e2, e23 = e2e3, and e31 = e3e1 are the grade 2 basis bi-vectors that are
frequently used; and e123 = e1e2e3 = i3 is the trivector or volume element or unit-oriented
pseudoscalar having grade 3—the highest grade blade element in C3, which commutes
with all the other elements of C3 and i23 = −1.

The basis vectors obey the following restrictions:

emen = −enem f or m 6= n, m, n = 1, 2, 3

e2
m = 1 f or m = 1, 2, 3.

Therefore, inner products obey the following condition:

em.en =
1
2
(emen + enem) = δmn, m, n = 1, 2, 3.

Thus, the inner product of grade 1 vectors x and y is given as

x.y =
1
2
(xy + yx)

= (x1e1 + x2e2 + x3e3).(y1e1 + y2e2 + y3e3)

= x1y1 + x2y2 + x3y3.

Likewise, the outer product of two arbitrary grade 1 vectors x and y is as

x ∧ y =
1
2
(xy− yx)

= (x1y2 − x2y1)e12 + (x3y1 − x1y3)e31 + (x2x3 − x3x2)e23.

Hence, the Clifford geometric product of two arbitrary grade 1 vectors is written as

xy = x.y + x ∧ y, (1)

where xy is the scaler quantity and x ∧ y is the vector quantity. Therefore, Equation (1)
clearly represents that the Clifford geometric product is the addition of the scaler and vector
quantities.
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Generally speaking, the elements of a geometric algebra are called multi-vectors. In
C3, every multi-vector M can be expressed as

P = ∑
A

αAeA (2)

= α0 + α1e1 + α2e2 + α3e3

+α12e12 + α23e23 + α31e31 + α123e123. (3)

Equation (3) represents that every multi-vector can be expressed as linear combination of
k- grade elements, k = 0, 1, 2, 3, where A ∈ {0, 1, 2, 3, 12, 23, 31, 123} and α ∈ R. The above
Equation (3) can be written as

P = 〈P〉+ 〈P〉1 + 〈P〉2 + 〈P〉3 (4)

where 〈P〉k is called the grade selector for the k- vector part of M, specifically, 〈P〉 = 〈P〉0.
The reverse of P is defined by the anti-automorphism

P̃ = 〈P〉+ 〈P〉1 − 〈P〉2 − 〈P〉3 (5)

which satisfies (̃PQ) = Q̃P̃ for every P, Q ∈ C3. The square of the norm is defined by

‖P‖2 = 〈PQ̃〉 = ∑
A

α2
A (6)

where
〈PQ̃〉 = P ∗ Q̃ = ∑

A
αAβA

represents real valued scalar product for any multi-vectors P, Q ∈ C3, where P and Q are
given by

P = ∑
A

αAeA (7)

Q = ∑
A

βAeA. (8)

Note that
〈P Q〉 = 〈Q P〉 = 〈P̃ Q̃〉 = 〈Q̃ P̃〉

and
x2‖P‖2 = ‖x‖2‖P‖2 = ‖xP‖2, x ∈ R3. (9)

It has been already proved that the norm satisfies the inequality:

〈PQ̃〉 ≤ ‖P‖‖Q‖ ∀ P, Q ∈ C3. (10)

Owing to (10), the Cauchy–Schwarz inequality for multi-vectors can be given as:

|〈PQ̃〉|2 ≤ ‖P‖2‖Q‖2 ∀ P, Q ∈ C3. (11)

3. Clifford–Fourier Transform

In this section, we discuss briefly the concept of Fourier transform in R and extend it
to a Clifford’s geometric algebra C3 of dimension 3. Other generalizations can be found
in [21–23].

3.1. Fourier Transform in R
The definition of Fourier transform has been given by Popoulis [24] as



Symmetry 2023, 15, 1421 4 of 16

Definition 1. The Fourier transform of an integrable function f ∈ L2(R) is the function F{ f } :
R→ C defined by

F{ f }(ω) =
∫
R

f (t)e−iωtdt (12)

where i2 = −1 and e−iωt = cosωt− isinωt .

The general form of the function F{ f }(ω) is given by

F{ f }(ω) = A(ω) + iB(ω) = C(ω)eiφ(ω) (13)

where C(ω) is called the Fourier spectrum of f (t) and φ(ω) is its phase angle.

Definition 2 (Inverse Fourier transform). The inverse Fourier transform of f ∈ L2(R) is
defined by

f (t) = F−1[F{ f }](ω) =
1

2π

∫
R
F{ f }(ω)eiωtdω. (14)

The basic properties of the Fourier transform are given below in Table 1.
Now, we will discuss the Clifford geometric algebra Fourier transform in C3.
Consider a multi-vector valued function f : R3 → C3, i.e.,

f (t) = ∑
A

fA(t)eA (15)

= f0(t) + f1(t)e1 + f2(t)e2 + f3e3

+ f12(t)e12 + f23(t)e23 + f31e31 + f123e123, (16)

where fA are real valued functions and t is a vector variable. The above Equation (16) can
be expressed as a set of four complex functions

f (t) = [ f0(t) + f123(t)i3] + [ f1(t) + f23(t)i3]e1

+[ f2(t) + f31(t)i3]e2 + [ f3(t) + f12(t)i3]e3. (17)

This is the motivation behind the extension of Fourier transform to Clifford–Fourier
transform (CFT), the definition of which is given below.

Definition 3. The Clifford–Fourier transform of f (t) ∈ L2(R3, C3) is given by

F{ f }(ω) =
∫
R3

f (t)e−i3ω.td3t, (18)

where t = t1e1 + t2e2 + t3e3; ω = ω1e1 + ω2e2 + ω3e3; and e1, e2, e3 are the basis vectors of
R3 and

d3t =
dt1 ∧ dt2 ∧ dt3

i3
(19)

is scalar valued, where dtk = dtkek, k = 1, 2, 3 no summation.

Since i3 commutes with element of C3, the Clifford–Fourier Kernel e−i3ω.t also com-
mutes with every element of C3

Theorem 1 (Inverse Clifford–Fourier transform). Let f ∈ L2(R3, C3) with
∫
R3
‖ f ‖2d3t < ∞;

then, the inverse of Clifford–Fourier transform is calculated by

f (t) = F−1[F{ f }](t) = 1
(2π)3

∫
R3
F f (ω)ei3ω.td3ω. (20)
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Equation (20) is called the Clifford–Fourier integral theorem. It just shows how to get back to the
given function f from the Fourier transform.

The proof is already formulated in [5].
The important properties and some theorems related to the CFT are summarized in

Table 1, which have been already proved in [5].

Table 1. Properties of 3-dimensional Clifford–Fourier transform f , g ∈ L2(R3, C3), α, β ∈ C3, s 6=
0, ω0 ∈ R3.

Property Function CFT

Linearity α f (t) + βg(t) αF{ f }(ω) + βF{ f }(ω)
Delay property fd(t) = f (t− a) e−i3ω.aF{ f }(ω)
Scaling property fs(t) = f (st) 1

s3F{ f }(ω
s )

Shift property f0(t) = f (t)ei3ω0.t F{ f }(ω−ω0)
Vector differential a.O f i3a.ωF{ f }(ω)
Vector derivative O f i3ω{ f }(ω)
Convolution f ∗ g F{ f }(ω)F{g}(ω)

Parseval theorem
∫
R3
‖ f (t)‖2d3t 1

(2π)3 ‖F{ f }(ω)‖2d3ω

3.2. Generalization towards One Sided n-Dimensional Clifford–Fourier Transform

This section recalls the definition of n-dimensional Clifford–Fourier transform
Cn = Cl(n, 0), n = 3(mod 4) with a graded 2n dimensional basis. Then, we present
some important properties of Cn = Cl(n, 0) [5]. For more details on the Clifford algebra of
the n dimension, see reference [5].

Definition 4. The Clifford–Fourier transform of f (t) ∈ L2(Rn, Cn) is given by:

F{ f }(ω) =
∫
Rn

f (t)e−inω.tdnt, (21)

where t = t1e1 + t2e2 + t3e3 + . . . + tnen; ω = ω1e1 + ω2e2 + ω3e3 + . . . + ωnen; and
e1, e2, e3 . . . , en are the basis vectors of Rn

and
dnt =

dt1 ∧ dt2 ∧ dt3 . . . ∧ dtn

in
, (22)

is scalar valued, where dtk = dtkek, k = 1, 2, 3, . . . , n no summation.

Since in commutes with the element of Cn, for n = 3(mod 4), the Clifford–Fourier
Kernel e−inω.t also commutes with every element of Cn. However, this is not true in the
case of n = 2(mod 4).

Theorem 2 (Inverse Clifford–Fourier transform). Let f ∈ L2(Rn, Cn) with
∫
Rn
‖ f ‖2dnt < ∞;

then, the inverse of Clifford–Fourier transform is calculated by

f (t) = F−1[F{ f }](t) = 1
(2π)n

∫
Rn
F{ f }(ω)einω.tdnω. (23)

Proof. The proof has already been derived in [7] for the 3-dimensional case, which can be
easily generalized in the case of n-dimensional Clifford–Fourier transform.

Now, we will present some properties of Cn = Cl(n, 0) in the Table 2, which will satisfy
for n = 3 (mod 4) due to the commutative property of in for n = 3 (mod 4).
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Table 2. Properties of n-dimensional Clifford–Fourier transform, n = 3(mod 4), f , g ∈ L2(Rn,Cn), α, β ∈
Cn, a 6= 0, ω0 ∈ Rn.

Property Function CFT

Left linearity α f (t) + βg(t) αF{ f }(ω) + βF{ f }(ω)
Scaling fa(t) = f (at), a 6= 0 1

|a|nF{ f }(ω
a )

Shift in frequency domain f0(t) = f (t)einω0.t F{ f }(ω−ω0)
Shift in space domain f0(t) = f (t− a) F{ f }(ω)e−inω.a

Power of t ∈ Rn from left tm f (t) Om
ωF{ f }(ω)im

n

Power of t ∈ Rn from right f (t)tm
∫
Rn

f (t)Om
ωe−inω.tdnt.im

n

Parseval theorem
∫
Rn

f1(t) f̃2(t)dnt 1
(2π)n

∫
Rn
F{ f1}(ω) ˜F{ f2}(ω)dnt

Scalar Parseval theorem
∫
Rn
‖ f (t)‖2dnt 1

(2π)n ‖F{ f }(ω)‖2dnω

Convolution f ∗ g F{ f }(ω)F{g}(ω)
Vector derivative (left) Om f (t) im

n ωmF{ f }(ω)
Vector derivative (right) f (t)Om im

n F{ f }(ω)ωm

In the coming section, we are now going to discuss our main work, that is, the
Wigner–Ville distribution associated with the n-dimensional Clifford–Fourier transform,
where n = 3(mod 4).

4. Wigner–Ville Distribution Associated with Clifford Geometric Algebra
Cln,0, n = 3(mod 4) Based on Clifford–Fourier Transform, n = 3(mod 4)

We begin by providing the definition of the Wigner–Ville distribution and enlist
its properties.

Definition 5. The Wigner–Ville transform (WVT) of f , g ∈ L2(R) is defined by:

W f ,g(t, ω) =
∫
R

f
(

t +
τ

2

)
g
(

t− τ

2

)
e−iωτdτ. (24)

The fundamental properties of WVT and their proofs can be found in [21–23].

Definition 6 (WVD-CFT). The WVD-CFT of two functions f , g ∈ (Rn, Cn), n = 3(mod 4) for
any τ ∈ Rn is defined as:

W f ,g(t, ω) =
∫
Rn

f
(

t +
τ

2

)
g
(

t− τ

2

)
e−inω.τdnτ. (25)

Suppose the auto correlation is defined as:

ht(τ) = f
(

t +
τ

2

)
g
(

t− τ

2

)
. (26)

Therefore (6) becomes

W f ,g(t, ω) =
∫
Rn

ht(τ)e−inω.τdnτ (27)

with t, ω ∈ Rn.

Note that dnτ =
dτ1 ∧ dτ2 ∧ dτ3 . . . ∧ dτn

in
is scalar valued with dxk = dxkek ∈ Rn,

k = 1, 2, . . . , n, no summation.
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Theorem 3. The WVD-CFT of f ∈ L2(Rn, Cn), n = 3(mod4), with
∫
Rn
‖ f ‖2dnτ < ∞ is

invertible, and its inverse is calculated by

f
(

t +
τ

2

)
f
(

t− τ

2

)
=

1
(2π)n

∫
Rn

W f (t, ω)einω.τdnω (28)

where ht(τ) is defined in (26).

Proof.

1
(2π)n

∫
Rn

W f (t, ω)einω.τdnω

=
1

(2π)n

∫
Rn

[∫
Rn

f
(

y +
τ

2

)
f
(

y− τ

2

)
e−inω.ydny

]
einω.τdnω

=
1

(2π)n

∫
Rn

∫
Rn

f
(

y +
τ

2

)
f
(

y− τ

2

)
ein(τ−y)ωdnωdny

=
∫
Rn

∫
Rn

f
(

y +
τ

2

)
f
(

y− τ

2

) n

∏
m=1

eim(τm−ym)ωm dnωdny

=
∫
Rn

f
(

y +
τ

2

)
f
(

y− τ

2

) n

∏
m=1

δ(τm − ym)dny

= f
(

t +
τ

2

)
f
(

t− τ

2

)
.

This completes the proof.

Note that we have used 1
2π

∫
R

ei(τm−ym)ωm dωm = δ(τm − ym), 1 ≤ m ≤ n for the fourth

equality.

Theorem 4 (Non-linearity property). Let f , g ∈ L2(Rn, Cn), then

W f+g(t, ω) = W f (t, ω) + Wg(t, ω) + W f ,g(t, ω)Wg, f (t, ω).

Proof.

W f+g(t, ω) =
∫
Rn
( f + g)

(
t +

τ

2

)
( f + g)

(
t− τ

2

)
e−inω.τdnτ

=
∫
Rn

[
f
(

t +
τ

2

)
+ g
(

t +
τ

2

)][
f
(

t +
τ

2

)
+ g
(

t +
τ

2

)]
e−inω.τdnτ

=
∫
Rn

f
(

t +
τ

2

)
f
(

t− τ

2

)
e−inω.τdnτ +

∫
Rn

g
(

t +
τ

2

)
g
(

t− τ

2

)
e−inω.τdnτ

+
∫
Rn

f
(

t +
τ

2

)
g
(

t− τ

2

)
e−inω.τdnτ +

∫
Rn

g
(

t +
τ

2

)
f
(

t− τ

2

)
e−inω.τdnτ

= W f (t, τ) + Wg(t, τ) + W f ,g(t, τ) + Wg, f (t, τ).

Hence, proved.

Theorem 5 (Shift in space domain). Let f ∈ L2(Rn, Cn) and if fs(t) = f (t− t0), then

W fs(t, ω) = W f (t− t0, ω). (29)

Proof.
W fs(t, ω) =

∫
Rn

f
(

t− t0 +
τ

2

)
f
(

t− t0 −
τ

2

)
e−inω.τdnτ.
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Put t− t0 = α, we have

W fs(t, ω) =
∫
Rn

f
(

α +
τ

2

)
f
(

α− τ

2

)
e−inω.τdnτ

= W f (α, ω)

= W f (t− t0, ω).

Theorem 6 (Shift in Frequency Domain). Let f ∈ L2(Rn, Cn) and if f0(t) = f (t)einω0t, then

W f0(t, ω) = W f (t, ω−ω0). (30)

Proof.

W f0(t, ω) =
∫
Rn

f
(

t +
τ

2

)
einω0(t+ τ

2 ) f
(

t− τ

2

)
e−inω0(t− τ

2 )e−inω.τdnτ

=
∫
Rn

f
(

t +
τ

2

)
f
(

t− τ

2

)
e−in(ω−ω0)τdnτ

= W f (t, ω−ω0).

The WVD-CFT W f (t, ω−ω0) is centered at the point ω = ω0 in the frequency domain.

Theorem 7 (Plancherel theorem for WVD-CFT). Let f , g ∈ (Rn, Cn) with their WVD-CFT’s
W f (t, τ) and Wg(t, τ), respectively, then

∫
Rn

h f (t, τ)hg(t, τ)dnτ =
1

(2π)n

∫
Rn

W f (t, τ)Wg(t, τ)dnω (31)

where

h f (t, τ) = f
(

t +
τ

2

)
f
(

t− τ

2

)
hg(t, τ) = g

(
t +

τ

2

)
g
(

t− τ

2

)
.

Proof. ∫
Rn

h f (t, τ)hg(t, τ)dnτ =
1

(2π)n

∫
Rn

[∫
Rn

W f ,t(τ)einω.τdnω

]
hg,t(τ)dnτ

=
1

(2π)n

∫
Rn

W f ,t(τ)

[∫
Rn

hg,t(τ)e−inω.τdnτ

]
dnω

=
1

(2π)n

∫
Rn

W f (t, τ)Wg(t, τ)dnω

which proves (31).

It is worth mentioning that the Plancherel theorem is a multivector-valued theorem.
It is valid for each grade k, 0 ≤ k ≤ n of the multivectors on both sides of Equation (31).
Hence, we conclude the following result.

Corollary 1. 〈∫
Rn

h f ,t(τ)hg,t(τ)dnτ

〉
k
=

1
(2π)n

〈∫
Rn

W f ,t(τ)Wg,t(τ)dnω

〉
k
. (32)

Remark 1. If f = g, then we have the following multivector version of the Parseval theorem.
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Theorem 8 (Parseval theorem).∫
Rn

h f ,t(τ)h f ,t(τ)d
nτ =

1
(2π)n

∫
Rn

W f ,t(τ)W f ,t(τ)dnω.

Since ‖M‖2 = 〈MM〉, the scalar part of the Parseval theorem together with
‖M‖2 = 〈MM〉 gives us the scalar Parseval theorem.

Theorem 9 (Scalar parseval).∫
Rn
‖h f ,t(τ)‖2dnτ =

1
(2π)n

∫
Rn
‖W[h f ,t(τ)]‖2dnω (33)

Now, we will derive the most important result, that is, convolution for WVD-CFT.

4.1. Convolution for WVD-CFT

In the begininig, we shall define Clifford convolution.

Definition 7. Let f , g ∈ L2(Rn, Cn); then, the Clifford convolution is defined by

( f ∗ g)(t) =
∫
Rn

f (x)g(t− x)dx. (34)

Theorem 10 (Convolution for WVD-CFT). Let f , g ∈ L2(Rn, Cn); then, the Clifford Convolu-
tion for Wigner–Ville associated with CFT is

W f ∗g(t, ω) =
∫
Rn

∫
Rn

W f (u, ω)Wg(t− u, ω)dnu. (35)

Proof. Since
W f ,g(t, ω) =

∫
Rn

f
(

t +
τ

2

)
g
(

t− τ

2

)
e−inω.τdnτ, (36)

it follows that

W f ∗g(t, ω) =
∫
Rn
( f ∗ g)

(
t +

τ

2

)
( f ∗ g)

(
t− τ

2

)
e−inω.τdnτ

=
∫
Rn

∫
Rn

f (x)g
(

t +
τ

2
− x
)

dx×
∫
Rn

f (y)g
(

t− τ

2
− y
)

dy e−inω.τdnτ

Put

x = u +
v
2

y = u− v
2

τ = v + w.

Therefore,

W f ∗g(t, ω) =
∫
Rn

∫
Rn

∫
Rn

f
(

u +
v
2

)
g
(

t +
τ

2
−
(

u +
v
2

))
× f
(

u− v
2

)
g
(
(t− τ

2
)− (u− v

2
)
)

e−inω.τdnvdnwdnu

=
∫
Rn

[∫
Rn

f
(

u +
v
2

)
f
(

u− v
2

)
e−inω.vdnv

×
∫
Rn

g
(

t− u +
w
2

)
g
(

t− u− w
2

)
e−inω.wdw

]
dnu

=
∫
Rn

W f (u, ω)Wg(t− u, ω)dnu
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which proves the convolution for WVD-CT.

The following theorem, that is, the reconstruction formula for the WVD-CFT deter-
mines that the Clifford signal can be uniquely determined in terms of the WVD-CFT within
a constant factor.

Theorem 11 (Reconstruction formula for WVD-CFT). The inverse transform of the Clifford
signal f ∈ L2(Rn, Cn) is given by

f (u) =
1

(2π)2g(0)

∫
Rn

W f ,g

(u
2

, ω
)

einω.udnω.

provided g(0) 6= 0.

Proof. Since we know that

W f ,g(t, ω) =
∫
Rn

f
(

t +
τ

2

)
g
(

t− τ

2

)
e−inω.τdn.τ.

By applying inverse of WVD-CFT (27), we obtain

f
(

t +
τ

2

)
g
(

t− τ

2

)
=

1
(2π)n

∫
Rn

W f ,g(t, ω)einω.τdnω

Using the change of variables τ
2 = t, we obtain

f (2t)g(0) =
1

(2π)2

∫
Rn

W f ,g(t, ω)e2inω.tdnω. (37)

Again, using the change of variables 2t = u, we have

f (u) =
1

(2π)2g(0)

∫
Rn

W f ,g

(u
2

, ω
)

einω.udnω.

This ends the proof of the Theorem.

Theorem 12 (Moyal’s Formula for WVD-CT). Let f , g ∈ L2(Rn, Cn); then, the following
equation holds:

∫
Rn

∫
Rn

∣∣∣∣W f ,g(t, ω)

∣∣∣∣2dnωdnt = (4π)n
∫
Rn
| f (u)|2dnu

∫
Rn
|g(v)|2dnv.

Proof.

W f ,g(t, w) = Fc{ht(τ)}(w),

where ht(τ) = f (t + τ
2 )ḡ(t− τ

2 ), which implies∫
Rn

∣∣∣W f ,g(t, w)
∣∣∣2dnw = ‖Fc{ht(τ)}‖2

L2(Rn ,Cl(n,0))

= (2π)n‖ht(τ‖2

= (2π)n
∫
Rn

f (t +
τ

2
)ḡ(t− τ

2
) f (t +

τ

2
).ḡ(t− τ

2
)dnτ

= (2π)n
∫
Rn

f (t +
τ

2
)ḡ(t− τ

2
) f̄ (t +

τ

2
).g(t− τ

2
)dnτ.
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Integrating above w.r.t dnt, we have∫
Rn

∣∣∣W f ,g(t, w)
∣∣∣2dnwdnt

= (2π)n
∫
Rn

∫
Rn

f (t +
τ

2
)ḡ(t− τ

2
) f̄ (t +

τ

2
).g(t− τ

2
)dnτdnt.

On setting t + τ
2 = u and t− τ

2 = v, which gives du = 1
2 dτ and dt = dv∫

Rn

∣∣∣W f ,g(t, w)
∣∣∣2dnwdnt = (2π)n.2n

∫
Rn

∫
Rn

f (u)ḡ(v)g(v) f̄ (u)dnvdnu

= (4π)n
∫
Rn

f (u) f̄ (u)dnu
∫
Rn
|g(v)|2dnv

= (4π)n
∫
Rn
| f (u)|2dnu.

∫
Rn
|g(v)|2dnv.

This proves the theorem.

Theorem 13 (Dilation). Let f , g ∈ (Rn, Cn); then,

WDc f ,Dcg = W f ,g

(
t
c

, cω

)
.

Proof.

WDc f ,Dcg =
1
c2

∫
Rn

f
(

t
c
+

τ

2c

)
ḡ
(

t
c
− τ

2c

)
e−inω.τdnτ

take τ
c = y, which gives dy = dτ.
Therefore,

WDc f ,Dcg =
∫
Rn

f
(

t
c
+

x
2

)
ḡ
(

t
c
− x

2

)
e−incω.xdnx

= W f ,g

(
t
c

, cω

)

Theorem 14 (Powers of τ ∈ Rn from left).

W{τmh f ,t(τ)} = Om
ωW{h f ,t(τ)}im

n , m ∈ N (38)

where
ht(τ) = f

(
t +

τ

2

)
f
(

t− τ

2

)
. (39)

Proof. First we shall prove the theorem for m = 1

W{τht(τ)} =
∫
Rn

τh f ,t(τ)e−inω.τdnτ

=
∫
Rn

Oωh f ,t(τ)ine−inω.τdnτ

= Oω

∫
Rn

h f ,t(τ)e−inω.τdnτin

= Oωw{h f ,t(τ)}in.

Repeating the process m− 1 times, one obtains

W{τmh f ,t(τ)} = Om
ωW{h f ,t(τ)}im

n , m ∈ N.
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Theorem 15 (Powers of τ ∈ Rn from the right).

W{h f ,t(τ)τ
m} =

∫
Rn

h f ,t(τ)O
m
ωe−inω.τdnτ im

n m ∈ N. (40)

Proof. We omit its proof as it follows directly from Theorem 14.

Now, we will derive the final formulas for the WVD-CFT Of h f ,t(τ) by using the above
Equation (40) and the dimension dependent commutation properties of in.

Theorem 16.
W{(a.τ)mh f ,t(τ)} = (a.Oω)

mW{h f ,t(τ)}im
n (41)

Proof. First, we shall prove the theorem for m = 1

W{(a.τ)h f ,t(τ)} =
∫
Rn

a.τh f ,t(τ)e−inω.τdnτ

=
∫
Rn

h f ,t(τ)a.τe−inω.τdnτ

=
∫
Rn

h f ,t(τ)a.Oωine−inω.τdnτ

= a.Oω

∫
Rn

h f ,t(τ)e−inω.τdnτin

= a.OωW{h f ,t(τ)}in.

By repeating the process m− 1 times

W{(a.τ)mh f ,t(τ)} = (a.Oω)
mW{h f ,t(τ)}im

n .

Corollary 2. On setting b.τh f ,t(τ), b ∈ Rn for h f ,t(τ), we obtain the following result.

W{(a.τ)b.τh f ,t(τ)} = a.Oωb.OωW{h f ,t(τ)}. (42)

Theorem 17 (Vector differential). The Clifford–Fourier transform of the mth power vector differ-
ential of the auto-co-relation function h f ,t(τ) is

W{(a.O)mh f ,t(τ)} = (a.ω)mW{h f ,t(τ)}im
n . (43)

Proof. We shall first prove (43) for m = 1

a.Oh f ,t(τ) = a.O.
1

(2π)n

∫
Rn

W{h f ,t(τ)}einω.τdτ

=
1

(2π)n

∫
Rn

W{h f ,t(τ)}a.Oeinω.τdτ

=
1

(2π)n

∫
Rn

W{h f ,t(τ)}a.ωineinω.τdτ

= W−1{a.ωW
(

h f ,t(τ)
)

in}.

Therefore,
W{(a.O)h f ,t(τ)} = (a.ω)W{h f ,t(τ)}in. (44)

Repeating the above process, we obtain (43). This completes the proof.
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Theorem 18 (Left vector derivative).

W{Omh f ,t(τ)} = ωmW{h f ,t(τ)}im
n (45)

Proof. The proof is omitted as it follows directly from Theorem 17.

Theorem 19 (Om from right).

h f ,t(τ)O
m =

1
(2π)n

∫
Rn

W{h f ,t(τ)}im
n einω.τωmdnω. (46)

Proof. Setting m = 1

h f ,t(τ)O =
1

(2π)n

∫
Rn

W{h f ,t(τ)}einω.τdnωO

=
1

(2π)n

∫
Rn

W{h f ,t(τ)}einω.τOdnω

=
1

(2π)n

∫
Rn

W{h f ,t(τ)}einω.τ inωdnω

=
1

(2π)n

∫
Rn

W{h f ,t(τ)}ineinω.τωdnω

This proves the case for m = 1. Following the same procedure, we obtain (46).

4.2. Uncertainty Principle

The uncertainty principle plays a central role in understanding the concepts of quan-
tum physics and is also vital for information processing. Quantum physics states that the
conjugate properties such as particle momentum and position cannot be simultaneously
measured accurately. Fourier analysis states that a function and its Fourier transform
cannot be simultaneously sharply localized.

In order to prove the directional uncertainty principle for WVD-CFT, we first state a
lemma and a proposition about the directional uncertainty principle for Clifford–Fourier
transform, which has been already proved in [5].

Lemma 1 (Directional uncertainty principle for CFT). Let f ∈ (Rn, Cn), having Clifford–Fourier
transform F{ f } with

∫
Rn ‖ f ‖2dnx = F < ∞; then, for any arbitrary constant vectors a, b:∫

Rn
(a.x)2‖ f (x)‖2dnx.

1
(2π)n

∫
Rn
(b.ω)2‖F{ f }(ω)‖2dnω ≥ (a.b)

1
4

F2

Proposition 1 (Integration by parts).

∫
Rn

f (t)[a.Og(t)]dnt =
[∫

Rn−1
f (t)g(t)dn−1t

]a.t=∞

a.t=−∞
−
∫
Rn
[a.O f (t)]g(t)dnt. (47)

Theorem 20 (Directional uncertainty principle for WVD-CT). Let f , g ∈ (Rn, Cn), such
that h f ,t(τ) = f (t + τ

2 )ḡ(t− τ
2 ) having the Clifford–Fourier transform F{ht(τ)}(ω). Suppose

that
∫
Rn
‖ht(τ)‖2dnτ = H < ∞; then, for any arbitrary constant vectors a, b, the following

inequality holds:∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(b.ω)2‖F{ht(τ)}(ω)‖2dnω ≥ (a.b)H2. (48)
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Proof. ∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(b.ω)2‖F{ht(τ)}(ω)‖2dnω

=
∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
‖F{b.Oht(τ)}(ω)‖2dnω using (44)

=
∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

∫
Rn
‖b.Oht(τ)‖2dnτ using (33)

≥
(∫

Rn
(a.τ)‖ht(τ)‖‖b.Oht(τ)‖dnτ

)2

≥
(∫

Rn
a.τ
∣∣∣〈ht(τ)b.Oht(τ)〉

∣∣∣dnτ

)2
using (11)

≥
(∫

Rn
a.τ〈ht(τ)b.Oht(τ)〉dnτ

)2
.

We know that
(b.O)‖ f ‖2 = 2〈 f̄ (b.O) f 〉

Therefore, we have∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(b.ω)2‖F{ht(τ)}(ω)‖2dnω

≥
(∫

Rn
a.τ

1
2

b.O‖ht(τ)‖2dnτ

)2

≥ 1
4

([∫
Rn

a.τ‖ht(τ)‖2dn−1τ−
]b.x=−∞

b.x=−∞
−
∫
Rn
(b.O)(a.τ)‖ht(τ)‖dnτ

)2

using (47)

=
1
4

(
0− a.b

∫
Rn
‖ht(τ)‖2dnτ

)2
.

= (a.b)H2

which proves (48). This completes the proof.

Corollary 3. If b = ±a, that is, b ‖ a with a2 = 1, then the above theorem gives the following
result: ∫

Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(a.ω)2‖F{ht(τ)}(ω)‖2dnω ≥ 1

4
H2.

Remark 2. Equality holds for the Gaussian multivector-valued function

ht(τ) = C0e−kτ2
. (49)

where C0 ∈ Cn is an arbitrary constant multivector, 0 < k ∈ R.
Therefore, we have from (49)

a.Oht(τ) = −2ka.τht(τ).

Theorem 21. For a.b = 0, that is, a ⊥ b , we have∫
Rn
(a.τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(ω)2‖F{ht(τ)}(ω)‖2dnω ≥ 0

where
ht(τ) = f (t +

τ

2
)ḡ(t− τ

2
).
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Theorem 22. With same assumptions as in theorem (48), we obtain the following result:∫
Rn
(τ)2‖ht(τ)‖2dnτ.

1
(2π)n

∫
Rn
(ω)2‖F{ht(τ)}(ω)‖2dnω ≥ n

4
H2.

5. Conclusions

The Wigner–Ville distribution has been associated with the one-sided Clifford–Fourier
transform over Rn, n = 3(mod 4), and some fundamental properties of WVD-CFT have
been established, such as non- linearity, the shift property, dilation, the vector differential,
the vector derivative, and powers of τ ∈ Rn. Additionally, some important theorems about
WVD-CFT have been formulated, which include the Parseval theorem, the convolution the-
orem, Moyals formula, and the reconstruction formula. Finally, the directional uncertainty
principle associated with WVD-CFT has been derived.
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