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Abstract: In recent years, the generating function of mixed-type special polynomials has received
growing interest in several fields of applied sciences and physics. This article intends to study a
new class of polynomials, called the ∆h-Frobenius–Genocchi–Appell polynomials. The generating
function of ∆h-Frobenius–Genocchi–Appell polynomials is constructed and some of their fundamental
properties are studied. By making use of this generating function, we investigate some novel and
interesting results, such as recurrence relations, explicit representations, and implicit formulas for
the ∆h-Frobenius–Genocchi–Appell polynomials. The quasi-monomiality and determinant form for
these polynomials are established. The ∆h-Genocchi–Appell polynomials are explored as a special
case and several results for ∆h-Genocchi–Appell polynomials are also obtained.

Keywords: Frobenius–Genocchi polynomials; ∆h–Appell polynomials; quasi-monomiality; determinant
form

MSC: 11B83; 33B10; 26C05; 11B68; 11B37

1. Introduction and Preliminaries

Special functions, equations, and integers are intensively studied in many disciplines
of mathematics, physics, and engineering. The Appell equations and numerals in partic-
ular are commonly employed in the creation of fundamental and applied mathematics
pertaining to approximation theories, interpolation issues, and quadrature rules (see [1–4]).
Many authors have explored several Appell polynomial extensions [5–9]. A new variety of
the Appell polynomials known as the ∆h-Appell polynomials was introduced in [10] by
employing the traditional finite difference operator ∆h. Due to their exceptional usefulness,
these ∆h-Appell polynomials have received a great deal of attention in physics as well as
in statistics.

These ∆h-Appell polynomial are represented as

J h
n (v) := Jn(v), n ∈ N0 (1)

and defined by
∆h{Jn(v)} = nhJn−1(v), n ∈ N, (2)

where ∆h, being f.d.o., is given as [11]

∆h[g](v) = g(v + h)− g(v). (3)
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The ∆h-Appell polynomials Jn(v) are specified by the generating expression [10]
as follows:

J (t)(1 + ht)
v
h =

∞

∑
n=0
Jn(v)

tn

n!
, (4)

where

J (t) =
∞

∑
n=0
Jn,h

tn

n!
, J0,h 6= 0. (5)

The Frobenius–Genocchi equations having order r, F[r]n(v|u), are specified by [12]

∞

∑
n=0

F
[r]
n (v|u) tn

n!
=

(
(1− u)t
et − u

)r
evt (u ∈ C \ {1}), (6)

for u ∈ C with u 6= 1 and n ∈ Z+.
For polynomials F[r]

n (v|u), numerous characterizations, properties, and identities can
be found in [13–16]. Taking v = 0 in Equation (6), we obtain the corresponding Frobenius–
Genocchi numbers F[r]

n (u) of order r:

F
[r]
n (u) := F

[r]
n (0|u)

and these numbers F[r]
n (u) lead us to give the recurrence relation

(F(u) + 1)n − Fn(u) = ((1− u))δn,0 and F0(u) = 1 (7)

where the Kronecker delta is denoted by δn,k.

Moreover, the equations F[r]
n (v|u) are stated recursively by the numbers F[r]

n (u) as

n

∑
k=0

(
n
k

)
F
[r]
k (u)vn−k (n ≥ 0) = F

[r]
n (v|u). (8)

Remark 1. Taking u = −1 and r = 1 in the generating Equation (6), the polynomials F[r]
n (v|u)

reduce to the Gn(v) polynomials
F
[1]
n (v| − 1) = Gn(v),

which are stated as
2t

et + 1
evt =

∞

∑
n=0

Gn(v)
tn

n!
. (9)

Now, we recall basic definitions that are mandatory throughout this study.

Definition 1. The expressions stated in [17]

∞

∑
n=m

S1(n, m)
tn

n!
=

(log(1 + t))m

m!
, (10)

are called Stirling integers S1(n, m) of the first kind.

Definition 2. The expression stated by

(v|λ)n = Πn−1
k=0 (v− λk), (11)

is called a simplified descending factorial (v|λ)n with incremental λ, established for positive integer
n, with the notion (v|λ)0 = 1.
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It follows that

(v|λ)n =
n

∑
k=0

S1(n, k)λn−kvk. (12)

From the Binomial theorem, we have

(1 + λt)
v
λ =

∞

∑
n=0

(v|λ)n
tn

n!
. (13)

We define the latest subclass of the ∆h-special functions and prove numerous identities
relating to these polynomials, which are inspired by the work in the direction of obtaining
∆h-special functions.

The rest of the paper is organized in the following manner. Section 2 introduces and
establishes various fresh identities for ∆h-Frobenius–Genocchi polynomials, as well as
their hybrid forms. Section 3 provides the ∆h-Frobenius–Genocchi–Appell polynomials’
quasi-monomiality and determinant forms. As a specific instance of ∆h-Frobenius–Genocchi–
Appell polynomials, ∆h-Genocchi–Appell polynomials are introduced in Section 4, along with
relevant findings. Finally, concluding observations and remarks are provided in Section 5.

2. ∆h-Frobenius–Genocchi–Appell Equations

In this section, the ∆h-Frobenius–Genocchi equations are explained before providing
the ∆h-Frobenius–Genocchi–Appell polynomials’ generating function. Additionally, several
novel identities for these polynomials are obtained. We provide the definitions below.

Definition 3. For v ∈ R, u ∈ C with u 6= 1 and n ∈ Z+. The expression stated by(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h =

∞

∑
n=0

F
[r,h]
n (v|u) tn

n!
, (14)

defines the generating expression for the ∆h-Frobenius–Genocchi polynomials, represented by
F
[r,h]
n (v|u) of order r. This, on taking v = 0, gives the corresponding numbers F[r,h]

n (u) of order r
listed as (

(1− u) log(1+ht)
h

(1 + ht)
1
h − u

)r

=
∞

∑
n=0

F
[r,h]
n (u)

tn

n!
. (15)

Remark 2. Taking h→ 0 in Equation (14), we obtain

lim
h→0

F
[r,h]
n (v|u) = F

[r]
n (v|u), n ≥ 0, (16)

where F[r]
n (v|u) are the Frobenius–Genocchi polynomials of order r mentioned in (6).

The development of hybrid forms of mathematical physics’ special functions has seen
great strides. A more recent method is to introduce hybridized polynomial forms and
describe their characteristics using generating functions. Hybrid special equations are
noteworthy because they have important properties, such as explicit relations, differential
and difference expressions, summation formulae, symmetrical and convolutional identities,
and determinant methods. The properties of hybrid distinct equations could be used to
resolve new difficulties in a range of scientific and technological domains.

In view of Equations (4) and (14), we define the ∆h-Frobenius–Genocchi–Appell
polynomials (∆h FGAP), denoted by FJ

[r,h]
n (v|u) of order r, as
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Definition 4. Let v ∈ R; u ∈ C with u 6= 1 and n ∈ Z+. The ∆h FGAP FJ
[r,h]

n (v|u) having
order r are given by the below-mentioned generative equation:

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h =

∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!
. (17)

In consideration of v = 0, Equation (17) gives the corresponding ∆h-Frobenius–Genocchi–
Appell numbers FJ

[r,h]
n (u) of order r, defined as

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

=
∞

∑
n=0

FJ
[r,h]

n (u)
tn

n!
, (18)

where J (t) is the same as in Equation (5).

Theorem 1. For any integral n ≥ 1, the underlying recurrence condition for ∆h FGAP FJ
[r,h]

n (v|u)
holds true:

FJ
[r,h]

n+1 (v|u) =
(

v + r
h

log(1 + ht)

)
FJ

[r,h]
n (v− h|u)

− r

(1 + ht)
1
h − u

FJ
[r,h]

n (v + 1− h|u) +
n

∑
k=0

(
n
k

)
βk,hFJ

[r,h]
n−k (v|u) (19)

Proof. By taking derivatives of (17) with respect to t, we have

v J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h−1 +

J ′(t)
J (t)

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h

− r

(1 + ht)
1
h − u

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v+1

h −1

+ r
h

log(1 + ht)
J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h−1 =

∞

∑
n=0

n FJ
[r,h]

n (v|u) tn−1

n!
.

(20)

Taking J
′(t)
J (t) =

∞
∑

k=0
βk,h

tk

k! and applying Equation (17), it was found that

(
v + r

h
log(1 + ht)

) ∞

∑
n=0

FJ
[r,h]
n (v− h|u) tn

n!
+

∞

∑
n=0

∞

∑
k=0

βk,h FJ
[r,h]
n (v|u) tn+k

n! k!

− r

(1 + ht)
1
h − u

∞

∑
n=0

FJ
[r+1,h]
n (v + 1− h|u) tn

n!
=

∞

∑
n=0

FJ
[r,h]
n (v|u) tn−1

n!
.

(21)

Applying the Cauchy product rule and then equating the coefficients of t on both sides
of Equation (21), assertion (19) is proven.

Theorem 2. For the ∆h FGAP FJ
[r,h]

n (v|u), the following implicit formulae hold true.

(a) FJ
[r,h]

n (v|u) =
n

∑
k=0

(
n
k

)
(z|h)kFJ

[r,h]
n−k (v− z|u). (22)

(b) FJ
[r,h]

n (v + z|u) =
n

∑
k=0

(
n
k

)
(z|h)kFJ

[r,h]
n−k (v|u). (23)

(c) FJ
[r,h]

n (v + z|u) =
n

∑
l=0

∞

∑
k=l

(
n
l

)
S1(l, k)zkhl−k

FJ
[r,h]

n−l (v|u). (24)
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Proof. (a) The generating Equation (17) can be written as

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v−z

h =
∞

∑
n=0

FJ
[r,h]

n (v− z|u) tn

n!
.

Consequently,

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h = (1 + ht)

z
h

∞

∑
n=0

FJ
[r,h]

n (v− z|u) tn

n!
(25)

Now, using relation (13) and the generating Equation (17), we have

∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!
=

(
∞

∑
k=0

(z|h)k
tk

k!

)
∞

∑
n=0

FJ
[r,h]

n (v− z|u) tn

n!
. (26)

Assertion (22) is obtained by applying the Cauchy product rule on the b/s of (26) by
subsequently comparing the coefficient of t.

(b) The generating Equation (17) can be written as

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v+z

h =
∞

∑
n=0

FJ
[r,h]

n (v + z|u) tn

n!
, (27)

Now, using relation (13), we have(
∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!

)(
∞

∑
k=0

(z|h)k
tk

k!

)
=

∞

∑
n=0

FJ
[r,h]

n (v + z|u) tn

n!
. (28)

Assertion (23) is obtained by applying the C.P. rule on the b/s of (28) by subsequently
comparing the coefficient of t.

(c) Equation (27) can be written as(
∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!

)(
∞

∑
k=0

( z
h

)k (log(1 + ht))k

k!

)
=

∞

∑
n=0

FJ
[r,h]

n (v + z|u) tn

n!
,

Now, using Equation (10), we have(
∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!

)(
∞

∑
k=0

( z
h

)k ∞

∑
l=k

S1(l, k)
(ht)l

l!

)
=

∞

∑
n=0

FJ
[r,h]

n (v + z|u) tn

n!
. (29)

Consequently,

∞

∑
n,l=0

∞

∑
k=l

FJn(v|u)
( z

h

)k
S1(l, k)hl tn+l

n! l!
=

∞

∑
n=0

FJ
[r,h]

n (v + z|u) tn

n!
. (30)

Substituting n by n− l in Equation (30) and comparing the coefficients t, the asser-
tion (24) follows.

Theorem 3. The explicit formula for ∆h FGAP FJ
[r,h]

n (v|u) in the context of the Stirling number
of the first kind S1(n, m) is as follows.

FJ
[r,h]

k+1 (v|u) =
k

∑
n=0

n

∑
k=0

(
n
k

){(
v(v− h)m − r

1− u
(v + 1− h)m

)
FJ

[r,h]
k−n (u)

−
k−n

∑
p=0

(
k− n

p

)
vmβp,h FJ

[r,h]
k−n−p(u)

}
hn−mS1(n, m).

(31)
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Proof. We can rewrite Equation (20) as

v J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v−h

h log(1+ht) +
J ′(t)
J (t)

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v
h log(1+ht)

− r

(1 + ht)
1
h − u

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v+1−h

h (1 + ht)

+ r
h

log(1 + ht)
J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v−h

h log(1+ht) =
∞

∑
k=0

k FJ
[r,h]

k (v|u) tk−1

k!
,

which can further be simplified as

(
v + r

h
log(1 + ht)

)
J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v−h

h log(1+ht)

+
J ′(t)
J (t)

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v
h log(1+ht)

− r

(1 + ht)
1
h − u

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

e
v+1−h

h (1 + ht)

=
∞

∑
k=0

k FJ
[r,h]

k (v|u) tk−1

k!
. (32)

Expanding the exponential and then using Equations (17) and (10) and taking J
′(t)
J (t) =

∞
∑

p=0
βp,h

tp

p! , it follows from the modification and resulting equation that(
v + r

h
log(1 + ht)

) ∞

∑
k=0

FJ
[r,h]

k (u)
tk

k!

∞

∑
n=0

(
n

∑
m=0

(
v− h

h

)m
S1(n, m)

)
hntn

n!

+
∞

∑
k=0

k

∑
p=0

βp,h FJ
[r,h]

k−p (u)
tk

p! (k− p)!

∞

∑
n=0

(
n

∑
m=0

(v
h

)m
S1(n, m)

)
hntn

n!

− r

(1 + ht)
1
h − u

∞

∑
k=0

FJ
[r,h]

k (u)
tk

k!

∞

∑
n=0

(
n

∑
m=0

(
v + 1− h

h

)m
S1(n, m)

)
hntn

n!
=

∞

∑
k=0

FJ
[r,h]

k+1 (v|u)
tk

k!
.

(33)

Taking the coefficients of identical powers of t in Equation (33) and subsequently
equating and exchanging both sides yields assertion (31).

Theorem 4. The ∆h FGAP FJ
[r,h]

n (v|u) could be represented in the form of ∆h-Frobenius–
Genocchi polynomials F[r,h]

n (v|u) and ∆h-Appell polynomials Jk(v), respectively, by the following
explicit representations:

(i) FJ
[r,h]

n (v|u) =
n

∑
k=0

(
n
k

)
αk,h F

[r,h]
n−k(v|u). (34)

(ii) FJ
[1,−h]

n (−v|u) =
n

∑
k=0

(−1)k
(

n
k

)
αn−k,h F

[1,h]
k (v + 1|u−1). (35)

(iii) FJ
[r,h]

n (v|u) =
n

∑
k=0

(
n
k

)
F
[r,h]
n−k(u) Jk(v). (36)

Proof. (i) Inserting Equations (5) and (14) in the l.h.s. of Equation (17), we obtain
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∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!

∞

∑
k=0

αk,h
tk

k!
=

∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!
. (37)

Assertion (34) is the result of using the Cauchy product rule on the l.h.s. of the previous
Equation (26) and subsequently replacing n with n− k.

(ii) In consideration of h→ −h, v→ −v and r = 1, Equation (17) yields

∞

∑
n=0

FJ
[1,−h]

n (−v|u) tn

n!
= J (t)

 (1− u) log(1−ht)
−h

(1− ht)−
1
h − u

 (1− ht)
v
h . (38)

On simplification, we obtain

∞

∑
n=0

FJ
[1,−h]

n (−v|u) tn

n!
= J (t)

 (1− u−1) log(1−ht)
−h

(1− ht)
1
h − u−1

 (1− ht)
v+1

h , (39)

Assertion (35) is the result of using Equations (14) and (5) subsequent to the reordering
of a sequence and comparison of the coefficient.

(iii) Inserting expressions (4) and (15) in the left-hand side of expression (17),

∞

∑
n=0

FJ
[r,h]

n (u)
tn

n!

∞

∑
k=0
Jk(v)

tk

k!
=

∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!
. (40)

Assertion (36) is the result of employing the Cauchy product rule on the l.h.s. of the
previous expression by replacing n with n− k.

Theorem 5. For ∆h FGAP FJ
[r,h]

n (v|u), we have the following identities:

(a) FJ
[r,h]

n (v|u) =
n

∑
k=0

(
n
k

)
(v|h)kFJ

[r,h]
n−k (u). (41)

(b) FJ
[1,h]

n (v + 1|u)− u FJ
[1,h]

n (u) = (1− u)
n

∑
k=0

(
n
k

)
FJ

[1,h]
n−k (u) (v|h)k. (42)

(c) FJ
[h]

n (1|u)− u FJ
[h]

n (u) = (1− u)
n

∑
k=0

(
n
k

)
FJ

[1,h]
n−k (u). (43)

Proof. (a) In the context of (13), deriving function (17) may be expressed as(
∞

∑
n=0

FJ
[r,h]

n (u)
tn

n!

)(
∞

∑
k=0

(v|h)k
tk

k!

)
=

∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!
. (44)

Assertion (41) is obtained by applying the C.P. on the b/s of the previous equation by
subsequently comparing the coefficient of t.

(b) Taking r = 1 in Equation (17), we have

∞

∑
n=0

FJ
[1,h]

n (v + 1|u) tn

n!
− u

∞

∑
n=0

FJ
[1,h]

n (v|u) tn

n!
=J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)(
1 + ht

) v+1
h

− uJ (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

) (
1 + ht

) v
h

= (1− u)J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)(
1 + ht

) v
h .

(45)

Using relations (5) and (18) in Equation (45), we obtain
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∞

∑
n=0

FJ
[1,h]

n (v + 1|u) tn

n!
− u

∞

∑
n=0

FJ
[1,h]

n (v|u) tn

n!
= (1− u)

∞

∑
n=0

FJ
[1,h]

n (u)
tn

n!

∞

∑
k=0

(v|h)k
tk

k!
. (46)

Assertion (42) is proven by using the C.P. rule followed by equating coefficients of
identical powers in the resultant equation.

(c) Result (43) can be obtained by taking v = 0 in relation (42).

In the next section, the quasi-monomiality and determinant form for the ∆h FGAP

FJ
[r,h]

n (v|u) are established.

3. Quasi-Monomiality and Determinant Form

Dattoli [18] introduced and thoroughly examined the idea of quasi-monomiality.
Finding the multiplicative and derivative operators is the major goal here. Additionally,
we establish the following conclusion to frame the ∆h FGAP FJ [r,h]n(v|u) order r within
the monomiality principle’s framework.

Theorem 6. With respect to the ∆h-FJ
[r,h]

n (v|u) polynomials, the following multiplying and
differential operators exhibit quasi-monomial features:

M̂F(r)J =

J ′
(

ehDv−1
h

)
J
(

ehDv−1
h

) +
v + r 1

Dv

ehDv
− r

ehDv

(
1− u

eDv

)
 (47)

and

P̂F(r)J =
ehDv − 1

h
. (48)

Proof. Contemplate the identity

1
h

log(1 + ht)
{

ev log(1+ht)
1
h
}

= Dv

{
ev log(1+ht)

1
h
}

. (49)

We have

t
{

ev log(1+ht)
1
h
}

=
ehDv − 1

h

{
ev log(1+ht)

1
h
}

. (50)

When the generative function (17) is partly differentiated with regard to t, it im-
plies that[(

v + r
h

log(1 + ht)

)
(1 + ht)−1 +

J ′(t)
J (t)

− r

(1 + ht)
1
h − u

(1 + ht)
1
h−1

+ r
h

log(1 + ht)
(1 + ht)−1

]
J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h =

∞

∑
n=0

FJ
[r,h]
n (v|u) tn−1

(n− 1)!
.

(51)

Hence, after reordering the summation and using generative function (17) and identity
(50) in the left-hand side of the resultant expression, we obtain

∞

∑
n=0

J ′
(

ehDv−1
h

)
J
(

ehDv−1
h

) +
v + r 1

Dv

ehDv
− r

ehDv

(
1− u

eDv

)
(

FJ
[r,h]
n (v|u) tn

n!

)
=

∞

∑
n=0

FJ
[r,h]
n+1 (v|u)

tn

n!
. (52)

Owing to the monomiality principle’s expression M̂{pn(v)} = pn+1(v) and the coeffi-
cients of the same powers of t on both sides of Equation (52), statement (47) is proven.
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In view of identity (50), we have

t

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h

 =
ehDv − 1

h

J (t)

(
(1− u) log(1+ht)

h

(1 + ht)
1
h − u

)r

(1 + ht)
v
h

. (53)

Using the generating Equation (17) on both sides and interchanging the sides, we have

ehDv − 1
h

{
∞

∑
n=0

FJ
[r,h]

n (v|u) tn

n!

}
=

∞

∑
n=1

FJ
[r,h]

n−1 (v|u)
tn

(n− 1)!
. (54)

Owing to the monomiality principle equation P̂{pn(v)} = n pn−1(v) and the compari-
son of the coefficients having similar powers of t in the left-hand as well as the right-hand
sides of expression (54), expression (48) follows.

Employing Equations (47) and (48) in the monomiality principle’s equation M̂P̂{pn(v)} =
n pn(v), the following conclusion can be drawn.

Corollary 1. For the ∆h FGAP FJ
[r,h]

n (v|u), we have the following differential equation:J ′
(

ehDv−1
h

)
J
(

ehDv−1
h

) +
v + r 1

Dv

ehDv
− r

ehDv

(
1− u

eDv

) − n
h

ehDv−1


FJ

[r,h]
n (v|u) = 0. (55)

Theorem 7. The ∆h FGAP FJ
[r,h]

n (v|u) gives rise to the determinant in the following form:

FJ
[r,h]

n (v|u) = (−1)n

(γ0,h)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 F
[r,h]
1 (v|u) F

[r,h]
2 (v|u) · · · F

[r,h]
n−1(v|u) F

[r,h]
n (v|u)

γ0,h γ1,h γ2,h · · · γn−1,h γm,h

0 γ0,h (2
1)γ1,h · · · (m−1

1 )γn−2,h (n
1)γn−1,h

0 0 γ0,h · · · (n−1
2 )γn−3,h (n

2)γn−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( m

m−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

where
γm,h, m = 0, 1, · · · are the coefficients of Maclaurin’s series of

1
J (t)

.

Proof. Multiplying both sides of Equation (17) by 1
J (t) = ∑∞

k=0 γm,h
tm

m! , we find

∞

∑
n=0

F
[r,h]
n (v|u) tn

n!
=

∞

∑
n=0

∞

∑
m=0

γm,h
tm

m! FJ
[r,h]

n (v|u) tn

n!
. (57)

Using the Cauchy product rule, we have

F
[r,h]
n (v|u) =

n

∑
m=0

(
n
m

)
γm,h FJ

[r,h]
n−m(v|u). (58)

The system of m-equations with unknowns FJ
[r,h]

n (v|u), n = 0, 1, 2, · · · . is generated
by this equality. Applying Cramer’s rule, as well as the understanding that the denominator
is the determinant of the lower triangular matrix (γ0,h)

n+1, the requisite result may be
achieved by transposing the numerator, and then substituting the i-th row with the (i + 1)-
th position for i = 1, 2, · · · , n− 1.
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In the following section, ∆h-Genocchi–Appell polynomial GJ
[h]

n (v) is introduced as a
special case of ∆h FGAP FJ

[r,h]
n (v|u) of order r.

4. Special Case

In consideration of u = −1 and r = 1, generating Equation (17) gives the generating
equation of ∆h-Genocchi–Appell polynomials GJ

[h]
n (v), defined as

J (t)

(
2 log(1+ht)

h

(1 + ht)
1
h + 1

)
(1 + ht)

v
h =

∞

∑
n=0

GJ
[h]

n (v)
tn

n!
, (59)

which for v = 0 gives the corresponding ∆h-Genocchi–Appell numbers GJ
[h]

n , given by

J (t)

(
2 log(1+ht)

h

(1 + ht)
1
h + 1

)
=

∞

∑
n=0

GJ
[h]

n
tn

n!
. (60)

Remark 3. Taking J (t) = 1 in Equation (59), we obtain the generating function of ∆h-Genocchi
polynomials G[h]

n (v): (
2 log(1+ht)

h

(1 + ht)
1
h + 1

)
(1 + ht)

v
h =

∞

∑
n=0

G[h]
n (v)

tn

n!
. (61)

When v = 0, G[h]
n := G[h]

n (0) gives the corresponding ∆h-Genocchi numbers.

Theorem 8. The ∆h-Genocchi–Appell polynomials GJ
[h]

n (v) are given by the following determi-
nant form:

GJ
[h]

n (v) =
(−1)n

(γ0,h)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 G[h]
1 (v) G[h]

2 (v) · · · G[h]
n−1(v) G[h]

n (v)

γ0,h γ1,h γ2,h · · · γn−1,h γm,h

0 γ0,h (2
1)γ1,h · · · (m−1

1 )γn−2,h (n
1)γn−1,h

0 0 γ0,h · · · (n−1
2 )γn−3,h (n

2)γn−2,h
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0,h ( m

m−1)γ1,h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (62)

where
γm,h, m = 0, 1, · · · are the coefficients of Maclaurin’s series of

1
J (t)

.

The other results for the ∆h-Genocchi–Appell polynomials GJ
[h]

n (v) are given in Table 1.
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Table 1. Results for GJ
[h]
n (v).

S. No. Result Expression

I. Multiplicative and M̂GJ =

(
j′
(

ehDv−1
h

)
j
(

ehDv−1
h

) +
v+r 1

Dv
ehDv − e−hDv

1+e−Dv

)
derivative operators P̂EJ = ehDv−1

h

II. Differential equation
(

j′
(

ehDv−1
h

)
j
(

ehDv−1
h

) +
v+r 1

Dv
ehDv − e−hDv

1+e−Dv − n h
ehDv−1

)
EJ

[h]
n (v) = 0

III. Recurrence relation
GJ

[h]
n+1(v) = (v + r h

log(1+ht) ) GJ
[h]
n (v− h) +

n
∑

k=0
(n

k)
(

βk,h GJ
[h]
n−k(v)−

1
2 G[h]

k GJ
[h]
n−k(v + 1− h)

)
IV. Implicit formulas GJ

[h]
n (v) =

n
∑

k=0
(n

k)(y|h)k GJ
[h]
n−k(v− y)

GJ
[h]
n (v + y) =

n
∑

k=0
(n

k)(y|h)k GJ
[h]
n−k(v)

GJ
[h]
n (v + y) =

n
∑

l=0

∞
∑

k=l
(n

l )S1(l, k)ykhl−k
GJ

[h]
n−l(v)

V. Explicit representations GJ
[h]
n (v) =

n
∑

k=0
(n

k)αk,h G[h]
n−k(v)

GJ
[h]
n (v) =

n
∑

k=0
(n

k)G
[h]
n−k Jk(v)

5. Concluding Remarks

In the following part, we establish the relation of ∆h FGAP FJ
[r,h]

n (v|u) with other
∆h-special polynomials.

Theorem 9. For n ≥ 1, the following relation between ∆h FGAP FJ
[r,h]

n (v|u) and ∆h-Genocchi–
Appell polynomials GJ

[h]
n (v) holds true:

FJ
[h]

n (v| − 1) =
1

n + 1 GJ
[h]

n+1(v). (63)

Proof. Taking u = −1 and r = 1 in relation (17), we obtain

∞

∑
n=0

FJ
[h]

n (v| − 1)
tn

n!
= J (t)

1
t

(
2 log(1+ht)

h

(1 + ht)
1
h + 1

)
(1 + ht)

v
h .

On further simplification, we have

∞

∑
n=0

FJ
[h]

n (v| − 1)
tn+1

n!
=

∞

∑
n=0

G A[h]
n (v)

tn

n!
. (64)

When the coefficients of similar powers of t are compared, assertion (63) follows.

Similarly, we obtain the following relation between ∆h FGAP FJ
[r,h]

n (v|u) and ∆h-
Bernoulli–Appell polynomials BJ

[h]
n (v):

FJ
[h]

n (v| − 1) =
2

n + 1 B A[h]
n+1(v). (65)

Remark 4. Further, on taking J (t) = 1, ∆h FGAP FJ
[r,h]

n (v|u) could be expressed in the form of
the ∆h-Bernoulli polynomials B[h]

n (v) and ∆h-Genocchi polynomials G[h]
n (v), respectively:

FJ
[h]

n (v| − 1) =
2

n + 1
B[h]

n+1(v). (66)
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FJ
[h]

n (v| − 1) =
1

n + 1
G[h]

n+1(v). (67)

Posing a problem. Establish the corresponding results for ∆h-Bernoulli–Appell poly-
nomials BJ

[h]
n (v) and ∆h-Euler–Appell polynomials EJ

[h]
n (v) as in Sections 2 and 3. This

posed problem is left to the interested researcher for further investigation.
A significant area of mathematics that has recently drawn the attention of many

mathematicians is the study of special functions. Some of the special functions were
developed to address particular issues, while others were applied to more general issues.
Numerous academics have looked at the ∆h variants of a few exceptional polynomials.
These polynomials are most commonly utilized in the study of finite differences, analytical
numerical methods, and applicability in classical calculus and statistics. We refer to [19–21].
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