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Abstract. Due to the extra degrees of freedom and simple geometrical
manifestation, the linear canonical transform (LCT) has being broadly employed
across several disciplines of science and engineering including signal processing,
optical and radar systems, electrical and communication systems, quantum
physics etc. The main objective of this paper is to study the linear canonical
Hankel transformation and the continuous canonical Bessel wavelet transformation
and some of their basic properties. The continuous Canonical Bessel wavelet
transformation, its inversion formula and Parsevals relation for the continuous
Canonical Bessel wavelet transformation are also studied.

1. Introduction

The theory of linear canonical transformation (LCT) was motivated by the work of
two different projects by Collins [6]-on the field of paraxial optics, on the other hand,
Moshinsky and Quesne [11] in the field of nuclear physics in early seventies. The LCT
is a four parameter class of linear integral transformation for studying the behaviour of
many useful transformations and system responses in physics and engineering in general.
Therefore, LCT is ' found as a powerful mathematical tool in many fields of physics
and engineering. In this correspondence, we have defined the continuous Canonical
Bessel wavelet transformation and associated properties. A general class of LCT has
been studied by[l, 14]. The conventional canonical transformation represents any affine
linear transformation in the (z, y) plane and specified by a 2x 2 unimodular matrix A (i.e.
determinant-is one). For the sake of brevity, we may write the matrix as A = (a, b; ¢, d)
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in the text and linear canonical transform of any f € L?(R) with respect to the uni-
modular matrix A = (a,b, ¢, d) is defined by
Je KAt x)dt  b#0
£ifl(@) = 2
Vdexp e f(dx) b=0.

where K4(t,x) is the kernel of linear canonical transform and is given by

t(at? — 2tz + da?) }
KA(t,x) = { , b#0
(t) 2w 2b a
The linear canonical transform includes several known transforms as special
cases.For example, for A = (1,b,0,1), we obtain the Fresnel transform, for A =
(cosf,sinf, —sinf, cosd), the LCT boils down to the fractional Fourier transform
whereas for A = (0,1,—1,0), we obtain the classical Fourier transform. Moreover,

Bi-lateral Laplace, Gauss-Weierstrass, and Bargmann transform are also special cases
of LCT. Similarly, we can define a linear canonical Hankel transformation, fractional
Hankel transformation. For more details we refer to [2, 3, 4, 5, 7, 10, 12, 13] and
references therein.

Pathak and Dixit [11] introduced continuous  and discrete Bessel wavelet
transformations and studied their properties by exploiting the Hankel convolution of
Haimo [8] and Hirschman [9] . Upadhyay et al. [15] studied the continuous Bessel
wavelet transformation associated with the Hankel-Hausdorff operator.

Let LP(R) denote the measurable functions f on R such that the integral [, |f(z)[Pdt
is a finite. Also let L*°(R) be a collection of almost bounded functions endowed with
norm

1fller { Jelf@IY?, 15 p < oo

esssupgzer|f(t )|, p = oo.

The Hankel transformation of H,, of conventional function f € L*(R;),R; = (0,00) is
usually defined by:

o) = () 0) = S (@) P Iy fa)de weRyp> 172,

0
and its inverse formula is given by

10 A (Hd)@) = [ @) ) fddy v e Ry

0
where J, is the Bessel function of the first kind of order p.

The Linear Canonial Hankel transform (LCHT)is the generalization of conventional
Hankel transformation and it is characterize by a unimodal matrix A = (a, b, ¢, d), where
a, b, c and d are four real or complex parameters. The earliest work on canonical Hankel
transform was published by Wolf and Bultheel et al. We define a one-dimensional linear
canonical Hankel transformation(LCHT)as:

FA) = (HAD)(y /ny )z
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where the kernel
e—vm/2(14p)

b
The inversion formula of one dimensional LCHT is given by

f(x) = ((H) 7 f)(@) = /OOO KM (@, y) (H ) (y)dy

. ax? 2 Ty
K (w,y) = AW () 27, (5)

where
v /2(14

From [7], wavelets are a family of functions constructed from translation and dilation of
a single function v are called the mother wavelet defined by

Kz, y) =

1 x—1
s = — , teR, 0
¢t, \/gw( s ) S 5>

where s is called the scaling parameter which measures the degree of compression or
scale and t is a translation parameter which determines the time location of the wavelet.
The linear canonical mother wavelet is defined as
1/)24 :L x—t efzti)a(:c2_t2)
s s
for each s,t and A as above. As per [12, 13] the canonical Hankel convolution of
f,b € LY(R,) is defined as:

== (1+p) oo e
(Frale) = S5 [ F@ 0w vy

where the canonical Hankel translation 74

(r) (y) =™ (2, )

6_2

() ool "
- T/ ¢(z)DM (x,y,2)e2* dz
0

is given as:

Where
Do) = o [Tt () woi (£) cot
xJ, (be) e @) el 2n e
and

LT (1) o —a (r2+y2)
€z A a2 142 ez
D 25 Hdz = .
b / (g 2t 2 = R 1)

Lemma 1.1. If f € L?(R+), then

=2 1)) :

L2 |bet2260(p + 1))

171122
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Proof. Since

(T2 ) = fA(=,y)

2

e TEE (L) oo N B
= / f(2)D;} (x,y, 2)e* dz
0

Using (1.1), we have

(7)) ()
</ ‘f(z)zfl/Q(qul/Z){Dﬁ(x’y’z)}l/Q Z1/2(p+1/2){D;?(x’y’z)}ug’dz

~—Jo
00 1/2
< ( / z—<ﬂ+1/2>|f<z>|2|Dﬁ<x,y,z>|dz)
0
0o 1/2
( / z<“+1/2>f<z>|2D;?<x,y,z>dz>
0
< (wy) /2 V2
< (I(b)’*“/2|2“F(u+ 1>)

oo 1/2
([ ommiser s, s 12
0

so that

/0 T AR dy

< Z‘P‘+1/2 oo Sy 2d oo DA #+1/2d
= (b)rHY220T (1 + 1) Jo z |f(2)]7d= ; |DiN,y, 2)ly y
1/2 o o
< ot/ / Zf(y+1/2)|f(z)‘2 St/ .
~ (O AT |(b)#+1/228T (1 + 1)
p2nt1/2 s ,
- (T, VOre
therefore
1
“p—1/2(_A
Hl‘ w=1/ (12 f)(y)’ 2 = |bﬂ+1/22“F(M+1)|||f||L2-

Remark 1.2. If f € L?(R+), then

y2“+1/2

A 2 > 2
|\t e < gy, O
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and
1

2 22T+ 1))

[y 2 ) @)

£ 22

Proposition 1.3. Let (H;? f)(y) denote the canonical Hankel transformations of
function f then

/ " f@)a@de = b / AP ) T )y (13)
and

/ @) dz = b / T EA ) dy. (1.4)
0 0

Proof. We have

(f.9)

- / F(@)g(@)d(x)
= /OOO f(x) ((eg(gﬂt))b/ooo o 7t (ax?+dy?) (%)1/2 Jy (%) (Hﬁ‘g)(y)dy)
b/ooc <€;+H)> (H;19) () (/Ooo erlast ) (T0)12 () f(x)dx> dy

b / " HA D) () (HE ) )y
0

if f =g, then
/ | (@)dr = b / \(H2 £)(w)] dy.
0 0

2. The continuous Linear Canonical Bessel wavelet
transformation(CLCBWT)

The continuous linear canonical Bessel wavelet transformation (CLCBWT) is a
generalization of the-ordinary continuous Bessel wavelet transformation(CBWT). In
this section; we define the continuous linear canonical Bessel wavelet transformation and
study some of its properties using the theory of linear canonical Hankel convolution.

A Canonical Bessel wavelet is a function ¢ € L?(R) which satisfies the condition

0 A 2
a _ [T IHEY) ()]
C#’w_A Wd$<007 /142—1/2

where Clﬁwis called the admissibility condition of the canonical Bessel wavelet and
(H /14 )is the canonical Bessel transformation of ¥. The canonical Bessel wavelets th, S
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are generated from one single function v € L?(R,) by dilation and translation with
parameters s > 0 and t > 0 respectively by

t
Vi(@) = 572D (a) = sTADA(t @) = 5T (S’ i)
—ta 2 | 22 o0
= s Y2 (ZT"TZ)/ ¥(2) Dy (t, x,z) dz.
0 s s

Lemma 2.1. If ¢ € L?(R+), then

(1+1/2) 6= (u+1/2)
brH/228T (1 + 1))

vl 2 = | 19112

Proof. Since

—a 2 | 22 & i
it [ (142
) 0 S S

Now,

A/2041/2)

0o 1/2
] <72 [ el {D;:‘ (fx)}
’ 0 S S

1/2
aft
{or (55

< g71/2 </Oo W)(Z)FZ—(NH/Q)

0
i t
DA ==
(et (59

< g1/ ( (m)“H/Q )

§2(u+1/2)|br+1/2]20T (1)

DRl (2.)

X

1/2
t
Dﬁ <, E,z) ‘ dz>
s’ s

1/2
Z(u+1/2)dz>

1/2

1/2
dz) .

Thus
/ [ (o) [P

0
12(n+1/2) 0o o P
—(p+1/2) 2d DA v ;L+1/2d
- 52u+2|bu+1/2|2uF(u+1)/0 & [¥(2)] Z/O ’ u (s’ S7Z) T T
£2(n+1/2) 0o y
< .
= (sHL/2|put1/2)26T (1 + 1))2/0 ¥ (2)["dz
Hence
t(u+1/2) g=(p+1/2)
Wl Le < S]] 22

([brt1/21200 (p + 1))
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Theorem 2.2. Let f 1) € L>(R+).Then the continuous linear canonical Bessl wavelet
transform B$ is defined on [ by

oo

1/2
—a tx
BAY) (£, 5) = e—vm/2(1+m) —M/ 25t (=) (s2)? ) —u—1/2
( wf)( ,8)=e€ s e "

0
o () o

c-‘@

#0 ) (@) (Hif) (sw)de

Proof. We have

(BLS) (t:5)
fv wt s>

/ FEO R @) de
P - 2b(2 2) E§
—/0 f(é‘)( 1/2¢ / e <5 z)dz>d§
b oo 6L7\'/2(1+,LL) 00 ) fw 1/2 SUJ a2
- et (S [ e 25 A (5 o

o= (1) (e 1/2)( )1/2J (tw>m( )duw
sb sb

_ b oo €7L§w2(s%—1)w(fp,—1/2) tﬁ 1/2
et /2(1+p) g1/2 sb
w —_——
< T, ( b) (HAe 07 ) () W) (w)dw

By taking % = z the continuous linear canonical Bessel wavelet transformation can be

written as

A o0 1/2
— e (L tr

B t = ¢~ tm/2(1+) 7”/ 5 (5 —1)(sz)? —p—1/2

( wf)( 73) € S ; e x ;

() B0 @) T (501

This means

HALeF (Bt 5) ) = bs (@Y 2t w05 (HA 5O 1) (@) (H) (52)).

O

Theorem 2.3. Ify and vy are two wavelets and (B;Z‘lf)(t, s)and (B$2g) (t, s)denote the
continuous linear canonical Bessel wavelet transformations of f, g € L?(R.) respectively,
then

/ BN B ) =12, (),

0
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where

ds < 0.

A _ /°° (Hit1) (s) (H2) (s)
Hothr,p2 T

52(H+1)

Proof. Since

0o 1/2
(BE) (1) = men/20sn [ 5 G0 (f)
0

< (50) (25O ) TG )
Now

dtds
2

S

oo oo o ) . 1/2
:/ / 67L7r/2(1+ﬂ)s*l1«/ e2b (Zz—1)(sz) xfufl/g <_)
0 0 0 b

% T (%) (Hile$ 0 ) (@) (HT:)(se)da

/ T BA NGB 5)

x [e—bﬂ/Q(l—Ht)S—# [0 e (D6 a2 (1) /2

X Ty (%) (Hite 5O £)(y) () (sy)dy | de s

—ta —ta

0o poo
_o(u —wan_2\.2 L 2 .
:/0 A p3g2(nt1) o35 (2=87)2” fmp 1/2(Hlfe 75 (+) f)(w)(H,fl’l/h)(S.r)

[ o g (12)12 ), (1)

(TSR e () P ()

—ta

X e%(2—52)y2y—u—1/2(er P (~)zg)(y)(H;‘z/)2)(sy)dy) dt} dxds

:/ / b3572(u+1)e‘22“'(275%21;*#*1/2(}1;‘@_zléa(-)zf)(a:)(H;fw)(sx)
0 0

« {ewr/zljlﬂw fooo bt (t2+a?) (%)1/2 I, (tz) (H;?)_l (e;"b“ (2—-s)y?

< y=h=12 (M Aew O g) (y)( HMQ)(Sy)) (t)dt.} dds.



On the continuity of linear canonical Bessel wavelet transformations 289

— b3/ / 72(M+1 L (2—52)z? o 1/2(HA6 L (')Qf)(:c)m(5$)

% (H;:‘)(Hl‘?)’l (6%(2752)y2y7u*1/2(Hﬁ‘e%a(ﬂg)(y)(Hfzb)(sy)) (z)dxzds

0o oo
— b3/0 /0 S—2(u+1)m—2u—1(

x (Hpe=" () g)(x) (H o) (sw)dwds

e O f)(z)

o [ e TTEF

X (/OW(Sx)2(u+1)(Hﬁlg/;l)(sx)(waQ)(sx)xds> dx
5 Cihor | HAD @ )

_ b3cA¢1 Ve <HAf, HA >

= V*Cegra (:9)

Hence the proof is completed. O

Theorem 2.4. If ¢ is a wavelet and (B;Z‘f)(t,s) and (Bﬁf)(t,s) are the continuous
linear canonical Bessel wavelet transformof f, g € L*(R,) respectively, Then

/0 - / ~BAD @B ML = e 5.0).

Proof. If we take 91 =)o = 1 in Theorem 2.3 we get the proof of Theorem 2.6 O

Remark 2.5. If f =g and 9 = ¢35 = 9 then from Theorem 2.6, we have
dtds
| [iwinesrts =t

Theorem 2.6. Let f € L?(R,).Then f can be reconstructed by the formula

dtds
b CMU) / / Bwf wt 5(£)ST’ s>0
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Proof. For any g € L?>(R,), we have

b2CA ,(f, ) // (BAS)(t,9)(BAg)(t, )dtds

_ BEnws( [ aleri©ae) e
Ll (/ )%
= [T [ mtnswiio ] s
([ [ @nwstos ).

b2cA/ / (BAD 0,50 € )dtds

Therefore,

Theorem 2.7. If ¢ € L*(Ry), then
| [BenesBEae.s)] i< s .0,

where

P(x) = e O n =12 (gAT O 1) (2) (HAY) (s),

—ta g [g2V,2 L, —ta (y2__
Qa) = e Gy 2 (e O g) (y) (H M) (sy).

Proof. Using Theorem 2.2 and Theorem 2.7, we have

z‘,‘s<£>d5> ( / g(n)wz‘,‘s(n)dn> i

0

s &) [Ty (t f) dz) dﬁ]
UO g (12 Gt 2>/ $(:)D2 (zz ) Z)éﬂdt

X
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= [ A o 2 B 2O ) @) TR 500

><HA(e 5 (2=%)y? g —pu— 1/2(HA6 S5 ()2 g 79y )(H;j‘zﬁ)(sy))(t)dt

= bBs 2 / (HP)(t)(HAQ)(t)dt
0

= b*s 2 (H'P, H;' Q)

= b5 (P, Q).

This completes the proof of the theorem. O

Theorem 2.8. If1) be in L?(R ) is a Bessel wavelet and f is a function which is bounded
and integrable ,then the convolution (¢ x4 f)(x) is linear canonical Bessel wavelet.

Proof. We know that

(6 % f)(x) = / () )y~ YD f () dy
Therefore,

(¥4 D@ < J57 [(F20) @)y #2217 dy,

:/fw wa F)@)2 dr

= /ooo </OOO Juz D2 ) (720 )| |f1/2|dy>2 da

<[4 g e matomea) ([ f(y)|dy>1/2rdx
= () T ([ ([ i o et )
([ v <y>dy>2 ([ e Epe)

This implies that

1
(#1220 + 1)

1% #a (@) < | [Pl 2l Il < oo
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We have (¢ 4 f) € L2(Ry). Moreover,
| e e el do
<y |l (5) ) (5)
|b|5“p( w2 lain (5)I)
< [ amme o (5)|ae
—CAsup (m_“_l/Q i (3) ‘2) < .

Thus, the convolution function(t % 4 f) is a linear canonical Bessel wavelet. O

Theorem 2.9. Let f,1 are in L*(Ry) and (B;Z‘ )(t, s)is a continuous linear canonical
Bessel wavelet transform(CLCBWT), then
(1) (B;Z‘ )(t,8) is continuous on Ry x Ry x Ry.
BA hF1/2 g—(p+1/2) 5
2 t o < 2
&) BN < oz AT

Proof. (1) Let (to, so) be an arbitrary but fixed in Ry.Then using Holders inequality we
have:

(B £)(t,8) = (B2 f)(to, 50)]
<o [ ke e (43
,‘?(80 o )} dudz
s /2 (/ R 1/2|f )|2d:c/oooz“+1/2
o se) e (2 ]e)
O ([T [ o
[or(c59-me (5 )"

xu+1/2
<
= o2+ 1)

+1/2

+(n41/2) - téﬂ /2)

s2(pt+1/2)  2(pt1/2) |7
0
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And

ST a2 | pp (2,2, 2) - D (1, £,2) | a

Z;L+1/2

<
= [T Gt 1)

3

[St(u+1/2) _ sotgwm]

Hence by dominated convergence theorem and by the continuity of D; (£, %£,2) in the
variables t and s ,we have

lim lim ’(B;Zlf)(t,s) - (B;Z‘f)(to,so)‘ =0

t—to s—so

Which proves (B;Ef)(t, s) is continuous on Ry x R;.

Proof. (2)We have

Therefore, by the Holders inequality, we have
(B3 f)(t:5)]
<8712 (/ oo / T U7 a2
0. Jo

0 0

1/2
dxdz)

t x
A
1/2
t
D;‘ <,x,z) dxdz)
s’s

1/2
Z(u+1/2)dz)

t,u+1/2

0o 1/2
—1/2 2
< (wmmpemmrD)  (, Vere)
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Stu+1/2 1/2 oo ) 1/2
d
. <|bu+1/2|2ﬂrm+ 1)) (/ W) )

tu+1/2

- S(u+1/2)‘by+l/2|2ur(‘u + 1) Hf||L2||1/}||L2

H1/2 g (pt1/2)

T s/ |Gt 220 (1 + 1)

11l 1]l 2

This completes the proof. O
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