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Abstract Shah and Debnath [Tight wavelet frames on local fields, Analysis, 33 (2013),
293-307] have derived an explicit method for constructing tight wavelet frames on local
fields using the machinery of unitary extension principle. Continuing our investigation
of wavelet frames on local fields, this paper deals with the establishment of complete
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wavelet frame coefficients.
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1 Introduction

Function spaces play an important role in both classical and modern anal-
ysis, ordinary and partial differential equations, and approximation theory.
Representation of function spaces in terms of wavelet bases and other subse-
quent allied developments have been of significant importance and interest
to mathematicians and signal analysts. The problem of characterizing func-
tion spaces using wavelet-type systems has been extensively studied by sev-
eral authors. For example, Meyer [14] proved that wavelets with polynomial
decay form an unconditional bases for Lebesgue spaces. On the other hand,
Gripenberg [12] has given unconditional wavelet bases for the Lebesgue
spaces Lp(R), 1 < p < ∞ without any smoothness of the mother wavelet.
Similar results with weaker hypotheses were proved by Wojtaszczyk in [22].
These studies have been extended by Borup et al. [5], where they have es-
tablished a complete characterization of Lebesgue and Sobolev spaces in
terms of analysis coefficients associated with the wavelet frames generated
through an extension principle. More results in this direction can also be
found in [6,8,9,11] and the references therein.
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2 Firdous A. Shah, Shallu Sharma, M. Younus Bhat

Considerable research has been carried out on the construction of wavelets
on local fields or more generally on local fields of positive characteristic. For
instance, J. Benedetto and R. Benedetto [3] built wavelet bases on local
fields containing compact open subgroups. The notion of multiresolution
analysis on local fields of positive characteristic was introduced by Jiang
et al. [13]. They investigate certain properties of multiresolution subspaces
which provides the quantitative criteria for the construction of MRA in
L2(K) and gave an algorithm for constructing wavelet basis on local fields.
On other hand, an excellent construction of tight wavelet frames on lo-
cal fields of positive characteristic was given by Shah and Debnath [19]
by adapting the extension principles of Daubechies et al. [7] on the Eu-
clidean spaces to the local fields. To be more precise, they provide a com-
plete characterization of tight wavelet frames on local fields by virtue of the

modulation matrix M(ξ) =
{
m`

(
ξ + pu(k)

)}q−1
`,k=0

formed by the wavelet

masks m`(ξ), ` = 0, 1, . . . , N . These studies were proceeded by Shah and his
associates in [15,16,17,18], where they have given some algorithms for con-
structing periodic wavelet frames, wave packet frames, and semi-orthogonal
wavelet frames on local fields. The characterization of wavelets and MRA
wavelets on local fields has been completely discussed by Behera and Jahan
in [2] by virtue of some basic equations in the Fourier domain. As far as
the construction of wavelets in Lebesgue spaces of local fields is concerned,
Behera [1] has described a general scheme for constructing Haar wavelets on
local fields and proved that under some mild conditions, the Haar wavelet
system form an unconditional basis for Lp(K), 1 < p <∞.

Drawing inspiration from the construction of wavelets and MRA based
wavelet frames on local fields of positive characteristic [1,19], our aim is to
characterize the functions in Lebesgue spaces Lp(K) of local fields in terms
of their frame wavelet coefficients.

The rest of this paper is organized as follows. In Section 2, we review some
concepts and fix some notations and terminologies concerning local fields,
multiresolution analysis and MRA based wavelet frames over local fields
of positive characteristic. Section 3 focuses on characterization of Lebesgue
spaces of local fields by means of framelets generated by the unitary exten-
sion principles.

2 Preliminaries and wavelet frames on local fields

Let K be a field and a topological space. Then K is called a local field if both
K+ and K∗ are locally compact Abelian groups, where K+ and K∗ denote
the additive and multiplicative groups of K, respectively. If K is any field
and is endowed with the discrete topology, then K is a local field. Further,
if K is connected, then K is either R or C. If K is not connected, then it
is totally disconnected. Hence by a local field, we mean a field K which is
locally compact, non-discrete and totally disconnected. The p-adic fields are
examples of local fields. We use the notation of the book by Taibleson [21].
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Wavelet frame characterization 3

In the rest of this paper, we use the symbols N,N0 and Z to denote the sets
of natural, non-negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact
Abelian group K+. If α ∈ K and α 6= 0, then d(αx) is also a Haar measure.
Let d(αx) = |α|dx. We call |α| the absolute value of α. Moreover, the map
x→ |x| has the following properties:

(a) |x| = 0 if and only if x = 0;

(b) |xy| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.

Property (c) is called the ultrametric inequality. The set D={x∈ K : |x| ≤1}
is called the ring of integers in K. It is the unique maximal compact subring
of K. Define B = {x ∈ K : |x| < 1}. The set B is called the prime ideal in K.
The prime ideal in K is the unique maximal ideal in D and hence as result B
is both principal and prime. Since the local field K is totally disconnected,
so there exist an element of B of maximal absolute value. Let p be a fixed
element of maximum absolute value in B. Such an element is called a prime
element of K. Therefore, for such an ideal B in D, we have B = 〈p〉 = pD.
As it was proved in [21], the set D is compact and open. Hence, B is compact
and open. Therefore, the residue space D/B is isomorphic to a finite field
GF (q), where q = pc for some prime p and c ∈ N.

Let D∗ = D \B = {x ∈ K : |x| = 1}. Then, it can be proved that D∗

is a group of units in K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗.
For a proof of this fact we refer to [21]. Moreover, each Bk = pkD ={
x ∈ K : |x| ≤ q−k

}
is a compact subgroup of K+ and usually known as

the fractional ideals of K+. Let U = {ai}q−1i=0 be any fixed full set of coset
representatives of B in D, then every element x ∈ K can be expressed
uniquely as x =

∑∞
`=k c`p

` with c` ∈ U . Let χ be a fixed character on K+

that is trivial on D but is non-trivial on B−1. Therefore, χ is constant on
cosets of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K. Suppose that χu is
any character on K+, then clearly the restriction χu|D is also a character
on D. Therefore, if {u(n) : n ∈ N0} is a complete list of distinct coset repre-
sentative of D in K+, then, as it was proved in [21], the set

{
χu(n) : n ∈ N0

}
of distinct characters on D is a complete orthonormal system on D.

Definition 2.1 If f ∈ L1(K), then the Fourier transform of f is defined by

F
{
f(x)

}
= f̂(ξ) =

∫

K
f(x)χξ(x) dx. (2.1)

It is noted that

f̂(ξ) =

∫

K
f(x)χξ(x)dx =

∫

K
f(x)χ(−ξx) dx.
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4 Firdous A. Shah, Shallu Sharma, M. Younus Bhat

The properties of Fourier transform on local field K are much similar to
those of on the real line. In fact, the Fourier transform have the following
properties:

1. The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K),

and
∥∥f̂
∥∥
∞ ≤

∥∥f
∥∥
1
.

2. If f ∈ L1(K), then f̂ is uniformly continuous.

3. If f ∈ L1(K) ∩ L2(K), then
∥∥f̂
∥∥
2

=
∥∥f
∥∥
2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫

|x|≤qk
f(x)χξ(x) dx, (2.2)

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore,
if f ∈ L2(D), then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=

∫

D

f(x)χu(n)(x) dx. (2.3)

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=
GF (q) where GF (q) is a c-dimensional vector space over the field GF (p). We

choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span {ζj}c−1j=0
∼= GF (q).

For n ∈ N0 satisfying

0 ≤ n < q, n = a0+a1p+· · ·+ac−1pc−1, 0 ≤ ak < p, and k = 0, 1, . . . , c−1,

we define
u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p−1.

Also, for n = b0+b1q+b2q
2+· · ·+bsqs, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,

we set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m+ n) =
u(m) + u(n). But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk + s) = u(r)p−k +
u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(`) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0. Hereafter we
use the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1
be as above. We define a character χ on K as follows:

χ(ζµp
−j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.

(2.4)
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Wavelet frame characterization 5

Since
⋃
j∈Z p

−jD = K, we can regard p−1 as the dilation and since

{u(n) : n ∈ N0} is a complete list of distinct coset representatives of D in K,
the set Λ = {u(n) : n ∈ N0} can be treated as the translation set. Note that
Λ is a subgroup of K+ and is not a group for the local field of characteristic
zero.

For 1 ≤ p <∞, we define Lp(K) as the Lebesgue space of all Lebesgue
measurable functions f : K → C together with the norm

∥∥f
∥∥
Lp(K)

=

(∫

K

∣∣f(x)
∣∣pdx

)1/p

<∞. (2.5)

Next, we define the dilation δj and the translation operators τy as follows:

δjf(x) = qj/2f
(
p−jx

)
and τyf(x) = f(x− y), f ∈ L2(K).

For given Ψ :=
{
ψ1, ψ2, . . . , ψN

}
⊂ L2(K), define the wavelet system

X(Ψ) =
{
ψ`j,k := qj/2ψ`

(
p−jx− u(k)

)
, j ∈ Z, k ∈ N0, ` = 1, 2, . . . , N

}
.

(2.6)

The wavelet system X(Ψ) is called a wavelet frame, if there exist positive
numbers A and B with 0 < A ≤ B <∞ such that

A
∥∥f
∥∥2
2
≤

N∑

`=1

∑

j∈Z

∑

k∈N0

∣∣∣
〈
f, ψ`j,k

〉∣∣∣
2
≤ B

∥∥f
∥∥2
2
, for all f ∈ L2(K). (2.7)

The largest A and the smallest B for which (2.7) holds are called wavelet
frame bounds. A tight wavelet frame refers to the case when A = B, and a
normalized or Parseval wavelet frame refers to the case when A = B = 1.

A generalization of classical theory of multiresolution analysis on local
fields of positive characteristic was considered by Jiang et al. [13]. Analogous
to the Euclidean case, following is a definition of multiresolution analysis on
local field K of positive characteristic.

Definition 2.2 Let K be a local field of positive characteristic and p be
a prime element of K. A multiresolution analysis (MRA) of L2(K) is a
sequence of closed subspaces {Vj : j ∈ Z} of L2(K) satisfying the following
properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;

(b)
⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};

(d) f(·) ∈ Vj if and only if f(p−1·) ∈ Vj+1 for all j ∈ Z;
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6 Firdous A. Shah, Shallu Sharma, M. Younus Bhat

(e) there is a function φ ∈ V0, called the scaling function, such that
{
φ
(
x− u(k)

)
: k ∈ N0

}

forms an orthonormal basis for V0.

Definition 2.3 We say that a function ψ defined on local field K belongs to
the regularity class R(K) if there exists constants C1, C2, γ and ε > 0 such
that

(a) ψ̂(0) =

∫

K
ψ(x) dx = 0

(b)
∣∣∣ψ̂(ξ)

∣∣∣ ≤ C2

(
1 + |ξ|

)−1−ε
, ∀ ξ ∈ K.

An MRA is said to be regular if the subspace V0 has an orthonormal
basis of the form

{
φ
(
x− u(k)

)
: k ∈ N0

}
for some regular scaling function

φ.
Given such a regular MRA, as in the case of Rn, we can find a collection

of smooth (of class R(K)) functions
{
ψ1, ψ2, . . . , ψN

}
⊂ V1, such that their

translates and dilations form an regular orthonormal basis of Wj , where
Wj , j ∈ Z are the direct complementary subspace of Vj in Vj+1 defined by

Wj = span
{
qj/2 ψ`

(
p−jx− u(k)

)
: 1 ≤ ` ≤ N, k ∈ N0

}
, j ∈ Z. (2.8)

The most widely recognized technique for building wavelet frames relies on
unitary extension principles (UEP) presented by Ron and Shen [20] and
subsequently extended by Daubechies et al. [7] in the form of the oblique
extension principle (OEP). In contrast with other wavelet frame character-
izations, the conditions showed in the two principles are essentially simple
to check, which makes the construction of wavelet frames painless. Follow-
ing the unitary extension principle [19], one often begins with a refinable
function φ or even with a refinement mask to construct desired wavelet
frames.

Consider a refinement mask m0(ξ) of the form

m0(ξ) =
1√
q

∑

k∈N0

ak χk(ξ), (2.9)

such that

φ̂(ξ) = m0(pξ)φ̂(pξ). (2.10)

Given a regular MRA {Vj : j ∈ Z} generated by a refinable φ(x), one can
construct a set of basic framelets Ψ :=

{
ψ1, ψ2, . . . , ψN

}
⊂ V1 satisfying

ψ̂`(ω) = m`(pω)φ̂(pω), (2.11)
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Wavelet frame characterization 7

where

m`(ω) =
1√
q

∑

n∈N0

b`n χn(ω), ` = 1, . . . , N = q − 1 (2.12)

are the integral periodic functions in L2(D) and are called wavelet masks.
With µ`(ω), ` = 0, 1, . . . N,N > q − 1, as the wavelet masks, we formulate
the matrix M(ω) as:

M(ξ) =




m0(ξ) m0

(
ξ + pu(1)

)
. . . m0

(
ξ + pu(q − 1)

)

m1(ξ) m1

(
ξ + pu(1)

)
. . . m1

(
ξ + pu(q − 1)

)
...

...
. . .

...
mN (ξ) mN

(
ξ + pu(1)

)
. . . mN

(
ξ + pu(q − 1)

)



N+1×N+1

.

(2.13)

The matrix M(ξ) is called the modulation matrix. The characterization
of the wavelet system (2.6) to be an orthonormal basis over the Vilenkin
groups in terms of the modulation matrices has been studied by Farkov et
al. [10] where as an explicit algorithm for the construction of the unitary
modulation matrixM(ξ) over local fields of positive characteristic has been
obtained by Berdnikov et al. [4]. In [19], Shah and Debnath built up a
strategy to produce wavelet frames on local fields using extension principles
and established a complete characterization of such frames by virtue of
the modulation matrix M(ξ). More precisely, they demonstrated that the
wavelet system X(Ψ) given by (2.6) constitutes a tight wavelet frame for
L2(K) if the modulation matrix M(ξ) given by (2.13) satisfies the UEP
condition

M(ξ)M∗(ξ) = IN+1, for a.e. ξ ∈ σ(V0), (2.14)

where σ(V0) :=
{
ξ ∈ D :

∑
k∈N0

|φ̂
(
ξ + u(k)

)
|2 6= 0

}
.

In order to prove the main result to be presented in next section, we
need the following lemma whose proof can be found in [14].

Lemma 2.4 Let
{
ak : k = 1, 2, . . . ,M

}
be a scalar sequence. Then

M∑

k=1

∣∣ak
∣∣p ≤

(
M∑

k=1

∣∣ak
∣∣
)p
≤Mp−1

M∑

k=1

∣∣ak
∣∣p, p ≥ 1,

Mp−1
M∑

k=1

∣∣ak
∣∣p ≤

(
M∑

k=1

∣∣ak
∣∣
)p
≤

M∑

k=1

∣∣ak
∣∣p, 0 < p < 1.

With Lemma 2.4 at hand, we can obtain the following result:
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Lemma 2.5 Let 1 < p <∞. Suppose that
{
fk
}M
k=1

is a non-negative func-
tion sequence in Lp(K). Then

M∑

k=1

∥∥fk
∥∥
Lp(K)

≤M2−2/p
∥∥∥∥∥
M∑

k=1

fk

∥∥∥∥∥
Lp(K)

. (2.15)

Proof. Using Lemma 2.4 for 0 < p < 1, we have

M∑

k=1

∥∥fk
∥∥
Lp(K)

=
M∑

k=1

{∫

K

∣∣fk(x)
∣∣pdx

}1/p

≤M1−1/p
M∑

k=1

{∫

K

∣∣fk(x)
∣∣pdx

}1/p

.

Again applying Lemma 2.4 and using the fact that the sum is finite, we
obtain

M∑

k=1

∥∥fk
∥∥
Lp(K)

≤M1−1/p



M

1−1/p
{

M∑

k=1

∫

K

∣∣fk(x)
∣∣pdx

}1/p




= M2−2/p
{∫

K

M∑

k=1

∣∣fk(x)
∣∣pdx

}1/p

= M2−2/p
∥∥∥

M∑

k=1

fk

∥∥∥
Lp(K)

.

ut

3 Wavelet frame characterization of Lebesgue spaces

In this section, we establish our main results concerning the characterization
of Lebesgue spaces Lp(K), 1 < p <∞ on local fields of positive characteris-
tic by means of the framelets generated by the so-called extension principles.
For any t ∈ K∗, we consider the function φt(x) = 1

|t|φ(x/t) such that φ

belongs to the regular class R(K). Then, for this choice φ(x), we define the
Littlewood-Paley function Pf(x) on local fields of positive characteristic as:

Pf(x) =

{∫

K
|φt ∗ f(x)|2 dt

t

}1/2

for all f ∈
⋃

p>1

Lp(K) (3.1)
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where φt∗f denotes convolution of φt and f . The discrete version of equality
(3.1) can be estimated as

[
Pf(x)

]2
=
∑

j∈Z

∫

pj(1+D)

∣∣φt ∗ f(x)
∣∣2 dt

t

≈
∑

j∈Z

∣∣φpj ∗ f(x)
∣∣2
∫

pj(1+D)

dt

t

= C
∑

j∈Z

∣∣φpj ∗ f(x)
∣∣2.

For brevity, we shall use the discrete version of (3.1) in the following way:

F (f)(x) =




∑

j∈Z

∣∣φpj ∗ f(x)
∣∣2




1/2

(3.2)

Moreover, from now we consider F (f) as the l2(N0)-norm of the vector-
valued function whose value at x is the sequence (Hφf)(x) ≡

{
φpj ∗ f(x) :

j ∈ Z
}

; that is

F (f)(x) =
∥∥∥
{
φpj ∗ f(x)

}
j∈Z

∥∥∥
l2(N0)

=
∥∥(Hφf)(x)

∥∥
l2(N0)

.

Similar to the standard Littlewood-Paley theory on the Euclidean space Rn
(see [11], Theorem 5.3, pp. 505), one can prove the following result.

Lemma 3.1 Let ψ be an integrable function on K such that

ψ̂(0) =

∫

K
ψ(x) dx = 0

and assume that, for some α > 0, it verifies

|ψ(x)| ≤ C
(
1+ |x|

)−1−α
, and

∫

K

∣∣ψ(x+h)−φ(x)
∣∣ dx ≤ C|h|α, h ∈ K.

Then, the operator F (f)(x) defined by (3.2) is bounded on Lp(K), 1 < p <
∞.

Theorem 3.2 Let
{
ψ1, ψ2, . . . , ψN

}
be the generators of a tight wavelet

frame for L2(K). If m0 and φ̂ are continuous at the origin and the frame
generators ψ`, ` = 1, 2, . . . , N belongs to the regular class R(K). Then, there
exist positive numbers Ap, Bp > 0 such that

Ap
∥∥f
∥∥
Lp(K)

≤
∥∥FΨ (f)

∥∥
Lp(K)

≤ Bp
∥∥f
∥∥
Lp(K)

, (3.3)
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holds for every f ∈ Lp(K), 1 < p <∞, where

FΨ (f)(x) =
N∑

`=1

Fψ`(f)(x) =




∑

j∈Z

∣∣ψ`pj ∗ f(x)
∣∣2




1/2

. (3.4)

Proof. We first prove the right hand inequality in (3.3). By the continuity

property of φ̂ at the origin and the fact that χk(0) = φ̂(0) = 1, we observe
from (2.10) and (2.11) that m(0) = 1 and m`(0) = 0, ` = 1, 2, . . . , N . By
Definition 2.3, it follows that each function ψ1, ψ2, . . . , ψN belongs to L1(K),

which implies that each ψ̂`(ξ) is continuous on K. By (2.11), we observe

that ψ̂`(0) = 0, 1 ≤ ` ≤ N . Hence ψ̂` ∈ R(K), for every ` = 1, 2, . . . , N .
Therefore, by Lemma 3.1, we infer that the associated Littlewood-Paley
function FΨ (f) is a bounded operator on Lp(K), 1 < p <∞. More precisely,
we can say that there exists a positive constant C` > 0 (depending only on
` ) such that

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

≤ C`
∥∥f
∥∥
Lp(K)

, 1 < p <∞. (3.5)

Thus, for every f ∈ Lp(K), we have

∥∥∥FΨ (f)
∥∥∥
Lp(K)

=

∥∥∥∥∥
N∑

`=1

Fψ`(f)

∥∥∥∥∥
Lp(K)

≤
N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

≤
N∑

`=1

C`
∥∥f
∥∥
Lp(K)

= C
∥∥f
∥∥
Lp(K)

. (3.6)

We now turn to the left hand inequality in (3.3). By implementing the
Plancherel’s theorem, we obtain

∥∥f
∥∥2
L2(K)

=
N∑

`=1

∥∥Fψ`(f)
∥∥2
L2(K)

=
N∑

`=1

∥∥∥
∥∥(Hψ`f)

∥∥
l2(N0)

∥∥∥
2

L2(K)
, for all f ∈ L2(K). (3.7)

Since
{
ψ1, ψ2, . . . , ψN

}
generates a tight wavelet frame for L2(K) if and

only if
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Wavelet frame characterization 11

N∑

`=1

∑

j∈Z

∣∣∣ψ̂`(p−jξ)
∣∣∣
2

= 1 for a.e. ξ ∈ K

N∑

`=1

∞∑

j=0

ψ̂`
(
p−jξ

)
ψ̂`
(
p−j
(
ξ + u(s)

))
= 0 for a.e ξ ∈ K, s ∈ N0\qN0

(See Behera and Jehan [2], Theorem 3.3). Using this result in the following
estimate, we get

N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
2

L2(K)
=

N∑

`=1

∫

K

∑

j∈Z

∣∣∣ψ`pj ∗ f(x)
∣∣∣
2
dx

=
N∑

`=1

∑

j∈Z

∫

K

∣∣∣ψ̂`(p−jξ)f̂(ξ)
∣∣∣
2
dξ

=

∫

K

N∑

`=1

∑

j∈Z

∣∣∣ψ̂`(p−jξ)
∣∣∣
2 ∣∣∣f̂(ξ)

∣∣∣
2
dξ

=

∫

K

∣∣∣f̂(ξ)
∣∣∣
2
dξ

=
∥∥f
∥∥2
L2(K)

.

We now use the just established equality (3.7) to prove the first inequality
in (3.3). Applying the polarization identity to (3.7), we obtain

∣∣∣∣
∫

K
f(x)h(x) dx

∣∣∣∣ =

∣∣∣∣∣
N∑

`=1

∫

K

〈
(Hψ`f)(x), (Hψ`h)(x)

〉
dx

∣∣∣∣∣

≤
N∑

`=1

∫

K

∥∥∥(Hψ`f)(x)
∥∥∥
l2(N0)

∥∥∥(Hψ`h)(x)
∥∥∥
l2(N0)

dx

=
N∑

`=1

∫

K
Fψ`(f)(x)Fψ`(h)(x) dx

≤
N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

∥∥∥Fψ`(h)
∥∥∥
Lp′(K)

,

for every f, h ∈ Lp(K) ∩ L2(K), where p′ is the conjugate exponent to p.
Taking the supremum over all h such that

∥∥h
∥∥
p′
≤ 1 and using (3.5) with p

replaced by p′, we infer that
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∥∥f
∥∥
Lp(K)

= sup
‖h‖p′≤1

∣∣∣∣
∫

K
f(x)h(x) dx

∣∣∣∣

≤ sup
‖h‖p′≤1

N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

∥∥∥Fψ`(h)
∥∥∥
Lp′(K)

≤ sup
‖h‖p′≤1

N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

C`
∥∥h
∥∥
Lp′(K)

≤ C
N∑

`=1

∥∥∥Fψ`(f)
∥∥∥
Lp(K)

, C = max
{
C` : ` = 1, 2, . . . , N

}

≤ CN2−2/p
∥∥∥∥∥
N∑

`=1

Fψ`(f)

∥∥∥∥∥
Lp(K)

(by Lemma 2.5)

≤ CN2−2/p
∥∥∥FΨ (f)

∥∥∥
Lp(K)

. (3.8)

By combining (3.6) and (3.8), we get the desired inequalities. This completes
the proof of the theorem.

We now give another characterization of the Lebesgue space Lp(K), 1 <
p <∞ by virtue of the tight wavelet frame coefficients.

For any real number λ > 0 and g defined on K, we define the maximal
function as

h∗λ(x) = sup
y∈K

|h(x− y)|
(
1 + |y|

)λ , x ∈ K. (3.9)

The Hardy-Littlewood maximal function of f ∈ L1(K) is defined by

Mf(x) = sup
k∈Z

1

qk

∫

x+Bk

|f(y)| dy. (3.10)

The following result establishes an inequality between two maximal
functions defined by (3.9) and (3.10). The proof of this Lemma can be
found in [21]. ut

Lemma 3.3 Suppose h∗λ(x) be the maximal function defined on K such that
h∗λ(x) <∞ for all x ∈ K. Then, there exists a constant Cλ such that

h∗λ(x) ≤ Cλ
[
M
(
|h|1/λ

)
(x)
]λ
, x ∈ K. (3.11)
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Moreover, if {fj}∞j=1 is a sequence of integrable functions defined on K, then
there exists a constant Cp,p′ such that

∥∥∥∥∥∥∥




∞∑

j=1

(Mfj)
p′





1/p′
∥∥∥∥∥∥∥
Lp(K)

≤ Cp,p′

∥∥∥∥∥∥∥




∞∑

j=1

(fj)
p′





1/p′
∥∥∥∥∥∥∥
Lp(K)

. (3.12)

Analogous to this result, we have the following inequality.

Lemma 3.4 Let φ(x) be a compactly supported function and f ∈ Lp(K),
0 < p ≤ ∞ such that φpj ∗ f ∈ Lp(K) for all j ∈ Z, then there exists a
constant Cλ for any real λ > 0 such that

(
Φj,λf

)
(x) ≤ Cλ

{
M
(∣∣φpj ∗ f

∣∣1/λ
)

(x)
}λ

, (3.13)

where

(
Φj,λf

)
(x) = sup

y∈K

∣∣(φpj ∗ f
)
(x− y)

∣∣
(
1 + qj |y|

)λ . (3.14)

Proof. Let h(x) = (φpj ∗ f)(pjx), so that h ∈ Lp(K) and h∗λ(x) <∞, where

h∗λ(x) is defined by (3.9). Since (φpj )
∧(ξ) = φ̂(pjξ) and φ(x) is compactly

supported on K, which in turn implies that inequality (3.11) holds for h(x).
On the other hand, we have

h∗λ(x) = sup
y∈K

|h(x− y)|
(1 + |y|)λ

= sup
y∈K

∣∣(φpj ∗ f
)(
pjx− pjy

)∣∣
(
1 + |y|

)λ

= sup
z∈K

∣∣(φpj ∗ f
)(
pjx− z

)∣∣
(
1 + qj |z|

)λ

=
(
φj,λf

)(
pjx
)
,

and

[
M
(
|h|1/λ

)
(x)
]λ

=
[
M
(
|φpj ∗ f |1/λ

) (
pjx
)]λ

.

Hence, the desired result follows immediately from the inequality (3.11).
ut
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Theorem 3.5 Let
{
ψ1, ψ2, . . . , ψN

}
be the generators of a tight wavelet

frame for L2(K) and each ψ`, 1 ≤ ` ≤ N satisfies the conditions as in
Theorem 3.2. Then, there exist constants 0 < Ap ≤ Bp <∞ such that

Ap
∥∥f
∥∥
Lp(K)

≤
∥∥WΨ (f)

∥∥
Lp(K)

≤ Bp
∥∥f
∥∥
Lp(K)

, (3.15)

for every f ∈ Lp(K), where

WΨ (f)(x) =





N∑

`=1

∑

j∈Z

∑

k∈N0

∣∣∣
〈
f, ψ`j,k

〉∣∣∣
2
|Ω|χΩ(x)





1/2

, (3.16)

and Ω = pj(D + k), |Ω| denoting the measure of the sphere Ω.

Proof. We first consider the right hand inequality in (3.15). For f ∈ L2(K),
we have

∣∣∣
〈
f, ψ`j,k

〉∣∣∣ = q−j/2
∣∣∣∣
∫

K
f(x)ψ`pj

(
x− pju(k)

)
dx

∣∣∣∣

= q−j/2
∣∣∣
(
ψ̃`pj ∗ f

)(
pju(k)

)∣∣∣

≤ q−j/2 sup
y∈Ω

∣∣∣
(
ψ̃`pj ∗ f

)
(y)
∣∣∣ , where ψ̃`pj (y) = ψ`pj (−y).

For any fixed `, 1 ≤ ` ≤ N and j ∈ Z, we have

∑

k∈N0

∣∣∣
〈
f, ψ`j,k

〉∣∣∣
2
qj |Ω|χΩ(x) ≤

∑

k∈N0

{
sup
y∈Ω

∣∣∣
(
ψ̃`pj ∗ f

)
(y)
∣∣∣
}2

χΩ(x)

≤
{

sup
|z|≤q−j

∣∣∣
(
ψ̃`pj ∗ f

)(
x− z

)∣∣∣
}2

≤
{

sup
|z|≤q−j

∣∣∣∣∣

(
ψ̃`pj ∗ f̃

)(
− x+ z

)

(1 + qj |z|)λ
(
1 + qj |z|

)λ
∣∣∣∣∣

}2

≤ q2λ
{

(Ψ `j,λf̃)(−x)
}2

≤ Cλ q2λ
{
M

(∣∣∣ψ`pj ∗ f̃)
∣∣∣
1/λ
)

(−x)

}2λ

,

where Ψ `j,λ has been defined in a similar fashion as that of (3.14).
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Applying Lemmas 2.5 and 3.4, we obtain

∥∥∥WΨ (f)
∥∥∥
Lp(K)

≤ Cλ qλ

∥∥∥∥∥∥∥





N∑

`=1

∑

j∈Z

[
M

(∣∣∣ψ`pj ∗ f̃
∣∣∣
1/λ
)]2λ





1/2
∥∥∥∥∥∥∥
Lp(K)

≤ Cλ
N∑

`=1

∥∥∥∥∥∥∥




∑

j∈Z

[
M

(∣∣∣ψ`pj ∗ f̃
∣∣∣
1/λ
)]2λ





1/2
∥∥∥∥∥∥∥
Lp(K)

= Cλ

N∑

`=1

∥∥∥∥∥∥∥




∑

j∈Z

[
M

(∣∣∣ψ`pj ∗ f̃
∣∣∣
1/λ
)]2λ





1/2
∥∥∥∥∥∥∥

λ

Lpλ(K)

≤ Cp,λ
N∑

`=1

∥∥∥∥∥∥∥




∑

j∈Z

[
M

(∣∣∣ψ`pj ∗ f̃
∣∣∣
1/λ
)]2λ





1/2
∥∥∥∥∥∥∥

λ

Lpλ(K)

≤ Cp,λ

∥∥∥∥∥∥∥

N∑

`=1




∑

j∈Z

[
M

(∣∣∣ψ`pj ∗ f̃
∣∣∣
1/λ
)]2λ





1/2
∥∥∥∥∥∥∥
Lp(K)

≤ Cp,λ
∥∥∥FΨ (f̃)

∥∥∥
Lp(K)

≤ BpCp,λ
∥∥f
∥∥
Lp(K)

. (3.17)

Next we prove the first inequality of (3.15). Let

(
SΨf

)
(x) =

{〈
f, ψ`j,k

〉
|Ω|1/2χΩ(x) : 1 ≤ ` ≤ N, j ∈ Z, k ∈ N0

}
.

Then, we have

(
WΨf

)
(x) =

{(
SΨf

)
(x)
(
SΨf

)
(x)
}1/2

.
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Since the wavelet system X(Ψ) is a tight wavelet frame for L2(K), we have
∫

K

(
SΨf

)
(x)
(
SΨf

)
(x) dx =

∥∥∥WΨf
∥∥∥
2

L2(K)

=

∫

K

N∑

`=1

∑

j∈Z

∑

k∈N0

∣∣∣
〈
f, ψ`j,k

〉∣∣∣
2
|Ω|χΩ(x)dx

=
N∑

`=1

∑

j∈Z

∑

k∈N0

∣∣∣
〈
f, ψ`j,k

〉∣∣∣
2

=
∥∥f
∥∥2
L2(K)

.

From this equality, the polarization identity and a density argument, we
obtain

∫

K
f(x)h(x) dx =

∫

K

(
SΨf

)
(x)
(
SΨf

)
(x)dx

for all f ∈ Lp(K) and h ∈ Lp′(K). By implementing the duality argument
together with Hölder’s inequality and equation (3.17) for Lp

′
(K), we deduce

that

∥∥f
∥∥
Lp(K)

= sup
‖h‖

p′

∣∣∣∣
∫

K
f(x)h(x) dx

∣∣∣∣

≤ sup
‖h‖

p′

∥∥∥WΨf
∥∥∥
Lp(K)

∥∥∥WΨh
∥∥∥
Lp′(K)

≤ Bp′
∥∥∥WΨf

∥∥∥
Lp(K)

. (3.18)

Combining (3.17) and (3.18), we get the desired inequalities. This completes
the proof of Theorem 3.5.
ut
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