Evidence for prolate-oblate shape coexistence in the odd-A ⁷³₃₅Br₃₈ nucleus

S. Bhattacharya,^{1,2} T. Trivedi,^{1,3,*} A. Mukherjee,¹ D. Negi,⁴ R. P. Singh,⁵ S. Muralithar,⁵ S. Jehangir,⁶ G. H. Bhat,^{7,8} Nazira Nazir,⁸ J. A. Sheikh,⁸ N. Rather,⁶ R. Palit,⁴ S. Nag,⁹ S. Rajbanshi,¹⁰ S. Chakraborty,¹¹ S. Kumar,¹² M. Kumar Raju,¹³ V. V. Parkar,¹⁴ D. Choudhury,¹⁵ R. Kumar,⁵ R. K. Bhowmik,⁵ S. C. Pancholi,⁵ and A. K. Jain,²
¹Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur-495009, India
²Amity Institute of Nuclear Science and Technology, Amity University UP, Noida-201313, India
³Department of Physics, University of Allahabad, Allahabad-211002, India

⁴Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, India

⁵Inter University Accelerator Centre, New Delhi-110067, India

⁶Department of Physics, Islamic University of Science and Technology, Awantipora-192122, India

⁷Department of Physics, Sri Pratap College, Srinagar-190001, India

⁸Department of Physics, University of Kashmir, Srinagar-190001, India

⁹Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India

¹⁰Department of Physics, Presidency University, Kolkata-700073, India

¹¹Variable Energy Cyclotron Centre, Kolkata-700064, India

¹²Department of Physics and Astrophysics, University of Delhi, New Delhi-110007, India

¹³Department of Physics, GITAM Institute of Science, Visakhapatnam-530045, India

¹⁴Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India

¹⁵Department of Physics, Indian Institute of Technology, Ropar-140001, India

(Received 29 November 2021; revised 29 August 2022; accepted 27 September 2022; published 14 October 2022)

The excited states in ⁷³Br nucleus have been investigated through the fusion evaporation reaction ⁵⁰Cr(²⁸Si, αp)⁷³Br at a beam energy of 90 MeV using the Indian National Gamma Array. The γ - γ coincidence technique has been used to add eight new γ -ray transitions in the level scheme. The mixing ratio of $\Delta I = 0$ (mixed with *E*2 and *M*1) transitions have been determined using angular distribution and R_{DCO} -polarization measurement. The half-life of the 9/2⁺ isomeric state has been measured to be $\tau_{1/2} = 52(2)$ ns from the variation in the intensity of delayed γ -ray transition as a function of coincidence time window. The two state mixing model calculations were performed to obtain the mixing amplitude, and mixing interaction of two different configurations of ⁷³Br. The calculated mixing amplitudes along with the deformations of two different configurations provide the monopole transition strength $\rho^2(E0)$ for Se, Br, and Kr isotopes in a semiempirical approach. These results support a prolate-oblate shape coexistence in the odd-A ⁷³Br nucleus. The observed structural properties have been discussed in terms of projected shell model calculations.

DOI: 10.1103/PhysRevC.106.044312

I. INTRODUCTION

Shape coexistence is widely spread over the nuclear chart, owing to the presence of competing "shell gaps" in the nuclear potential [1,2]. A strong interaction between the nucleons in the nuclear potential enhances the correlation energy of the system. Such interactions contribute to the origin of deformation resulting in different shapes for individual states at low excitation energy. The minima of these deformations can be vividly observed near the single particle shell gaps of the Nilsson diagram, where the minimum of the deformation energy moves towards a deformed shape in the region lying away from the shell closure. Specifically, in the $A \approx 70$ mass region, the shape driving behavior of the $g_{9/2}$ orbital results in the formation of low lying isomeric states, leading to a prolate-oblate shape coexistence [3].

In recent years, relatively light mass nuclei in the midshell region have attracted considerable attention due to the presence of shape coexistence in several even-even Ge, Se, and Kr isotopes [3-8]. In the ⁷²Ge nucleus, a shape isomer has been identified at the excited 0^+ state with a half-life of 444.2(8) ns [9]. Later, the multistep Coulomb excitation measurements confirm the asymmetric shape coexistence phenomena in which the prolate shaped 0^+_2 state coexists with an oblate-deformed ground state. The theoretical two state mixing model calculation also supports the presence of the prolate 0_2^+ state. In the light ⁷²Se nucleus, a shape isomer at excited $0^{\frac{1}{2}}_{2}$ state having a half-life of 22.8 (14) ns was reported by Hamilton et al. [10]. It was suggested that the low-lying 0_2^+ state having a deformed rotational character coexists with the vibrational states associated with the spherical ground state. Afterward, the monopole transition strength around

^{*}Corresponding author: ttrivedi1@gmail.com