

Bilal A. Chat¹

Received: 1 April 2018 / Accepted: 30 April 2021 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021

Abstract

Let \mathscr{D} be a simple digraph with *n*-vertices, *m* arcs having skew Laplacian eigenvalues $v_1, v_2, \ldots, v_{n-1}, v_n = 0$. The skew Laplacian energy $SLE(\mathscr{D})$ of a digraph \mathscr{D} is defined as $SLE(\mathscr{D}) = \sum_{i=1}^{n} |v_i|$. In this paper, we obtain the characteristic polynomial of skew Laplacian matrix of the digraph $\mathscr{D}_1 \to \mathscr{D}_2$ and also obtain the $SLE(\mathscr{D}_1 \to \mathscr{D}_2)$ in terms of $SLE(\mathscr{D}_1)$ and $SLE(\mathscr{D}_2)$ and show the existence of some families of skew Laplacian equienergetic digraphs.

Keywords Digraphs \cdot Skew Laplacian matrix \cdot Skew Laplacian spectrum \cdot Skew Laplacian energy

Mathematics Subject Classification Primary 05C50 · 05C12; Secondary 05C30 · 15A18

1 Introduction

Let \mathscr{D} be a simple digraph with *n* vertices v_1, v_2, \ldots, v_n and *m* arcs. Let $d_i^+ = d^+(v_i), d_i^- = d^-(v_i)$ and $d_i = d_i^+ + d_i^-$, $i = 1, 2, \ldots, n$ be the out-degree, in-degree and degree of the vertices of \mathscr{D} , respectively. The out-adjacency matrix $A^+(\mathscr{D}) = (a_{ij})$ of a digraph \mathscr{D} is the $n \times n$ matrix, where $a_{ij} = 1$, if (v_i, v_j) is an arc and $a_{ij} = 0$, otherwise. The in-adjacency matrix $A^-(\mathscr{D}) = (a_{ij})$ of a digraph \mathscr{D} is the $n \times n$ matrix, where: $a_{ij} = 1$, if (v_j, v_i) is an arc and $a_{ij} = 0$, otherwise. It is clear that $A^-(\mathscr{D}) = (A^+(\mathscr{D}))^t$.

The skew adjacency matrix $S(\mathcal{D}) = (s_{ij})$ of a digraph \mathcal{D} is the $n \times n$ matrix, where

$$s_{ij} = \begin{cases} 1, & \text{if there is an arc from } v_i \text{ to } v_j, \\ -1, & \text{if there is an arc from } v_j \text{ to } v_i, \\ 0, & \text{otherwise.} \end{cases}$$

⊠ Bilal A. Chat bchat1118@gmail.com

¹ Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora, Pulwama, India