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Abstract In this paper, we consider the Laplacian energy of digraphs. Various approaches
for the Laplacian energy of a digraph have been put forward by different authors.We consider
the skew Laplacian energy of a digraph as given in Cai et al. (Trans Combin 2:27–37, 2013).
We obtain some upper and lower bounds for the skew Laplacian energy which are better
than some previous known bounds. We also show every even positive integer is the skew
Laplacian energy of some digraphs.

Keywords Laplacian spectra · Skew-Laplacian spectra · Skew-Laplacian energy of a
diagraph

Mathematics Subject Classification 05C50 · 05C30

1 Introduction

LetD be a digraphwith n vertices v1, v2, . . . , vn andm arcs. Let d+
i = d+(vi ), d

−
i = d−(vi )

and di = d+
i + d−

i , i = 1, 2, . . . , n be the outdegree, indegree and degree of the vertices
of D , respectively. The out-adjacency matrix A+(D) = (ai j ) of a digraph D is the n × n
matrix, where ai j = 1, if (vi , v j ) is an arc and ai j = 0, otherwise. The in-adjacency matrix
A−(D) = (ai j ) of a digraph D is the n × n matrix, where ai j = 1, if (v j , vi ) is an arc and
ai j = 0, otherwise. It is clear that A−(D) = (A+(D))t .
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The skew adjacency matrix S(D) = (si j ) of a digraph D is the n × n matrix, where

si j =
⎧
⎨

⎩

1, if there is an arc from vi to v j ,

−1, if there is an arc from v j to vi ,

0, otherwise.

It is clear that S(D) is a skew symmetric matrix, so all its eigenvalues are zero or purely
imaginary. The energy of the matrix S(D) was considered in [1], and is defined as

Es(D) =
n∑

i=1

|ξi |,

where ξ1, ξ2, . . . , ξn are the eigenvalues of S(D). This energy of a digraph D is called the
skew energy by Adiga et al. [1]. For recent developments in the theory of skew energy, see
the survey [17].

Let D+(G) = diag(d+
1 , d+

2 , . . . , d+
n ), D−(G) = diag(d−

1 , d−
2 , . . . , d−

n ) and
D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex outdegrees, vertex indegrees
and vertex degrees of D respectively.

Many results have been obtained on the skew spectra and skew spectral radii of oriented
graphs [2,4–7,14,21–23].

Recently (in 2013) Cai et al. [3] defined a new type of skew Laplacian matrix S̃L(D) of
a digraph D as follows.

Let D+(D) and D−(D) respectively be the diagonal matrices of vertex outdegree and
vertex indegree and let A+(D) and A−(D) respectively be the out-adjacency and in-adjacency
matrix of a digraph D . If A(G) is the adjacency matrix of the underlying graph G of the
digraphD , then it is clear that A(G) = A+(D)+A−(D) and S(D) = A+(D)−A−(D),where
S(D) is the skew adjacency matrix of D . Therefore, following the definition of Laplacian
matrix of a graph, Cai et al. called the matrix

S̃L(D) = (D+(D) − D−(D)) − (A+(D) − A−(D))

= D̃(D) − S(D),

where D̃(D) = D+(D)− D−(D), as the skew Laplacian matrix of the digraphD . It is clear
that the matrix S̃L(D) is not symmetric, so its eigenvalues need not be real. However, we
have the following observation.

Theorem 1 (i) ν1, ν2, . . . , νn are the eigenvalues of S̃L(D), then
∑n

i=1 νi = 0.
(ii) 0 is an eigenvalue of S̃L(D) with multiplicity at least p, where p is the number of

components of D with all ones vector (1, 1, . . . , 1) as the corresponding eigenvector.

Following the definition of matrix energy given by Nikifrov [18], Cai et al. [3] defined the
skew Laplacian energy of a digraph D , as the sum of the absolute values of the eigenvalues
of the matrix S̃L(D) and obtained various bounds.

The rest of the paper is organized as follows. In Sect. 2, we obtain the skew Laplacian
energy of a star for any orientation and a cycle for some orientations. In Sect. 3, we mention
some known bounds for SLE(D). We also obtain some bounds for SLE(D)which are better
than already known bounds.
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2 Laplacian energy of digraphs

Definition 2.1 Skew Laplacian energy of a digraph. Let D be a digraph of order n with m
arcs and having skew Laplacian eigenvalues ν1, ν2, . . . , νn . The skew Laplacian energy of
D is denoted by SLE(D) and is defined as

SLE(D) =
n∑

j=1

|ν j |. (2.1)

This conceptwas introduced in 2013byCai et al. [3]. The idea ofCai et al.was to conceive a
graph energy like quantity for a digraph, that instead of skew adjacency eigenvalues is defined
in terms of skew Laplacian eigenvalues and that hopefully would preserve the main features
of the original graph energy. The definition of SLE(D) was therefore so chosen that all the
properties possessed by graph energy should be preserved.

The topic of energy of graphs and digraphs is an active component of the present research,
and various papers have been published in this direction. For the recent papers on the energy
of graphs and digraphs and related results, we refer to [9]–[12], [19] and the references
therein. For any undefined definition or notation, we refer to [20].

A digraph D is said to be Eulerian if d+
i = d−

i , for all i = 1, 2, . . . , n. Therefore, for an
Eulerian digraph D , we always have D̃(D) = 0, which gives S̃L(D) = −S(D). Using this,
we have the following observation.

Theorem 2.2 For an Eulerian digraph D , SLE(D) = Es(D), where Es(D) is the skew
energy of D .

As an immediate consequence to Theorem 2.2, we have the following result.

Corollary 2.3 For a directed cycle Cn, SLE(Cn) = Es(Cn), where Es(D) is the skew
energy of D .

We show that every even positive integer is indeed the skew Laplacian energy of some
digraph.

Theorem 2.4 Every even positive integer 2(n−1) is the skew Laplacian energy of a directed
star of order n + 1.

Proof Let V (K1,n) = {v1, v2, . . . , vn+1} be the vertex set of K1,n . If vn+1 is the center of
K1,n , orient all the edges toward vn+1. Then

S(K1,n ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 1
0 0 · · · 0 1

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · 0 1
−1 −1 · · · −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and D̃(K1,n ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0
0 1 · · · 0 0

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · 1 0
0 0 · · · 0 −n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore,

S̃L(K1,n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 −1
0 1 · · · 0 −1
...

... · · · ...
...

0 0 · · · 1 −1
1 1 · · · 1 −n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It is easy to see that the eigenvalues of this matrix are {−(n − 1), 0, 1[n−1]}, and so
SLE(K1,n) = 2(n − 1). On the other hand, if we orient the edges away from vn+1, then
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it can be seen that S̃L(K1,n ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 · · · 0 1
0 −1 · · · 0 1

.

.

.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · −1 1
−1 −1 · · · −1 n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, having eigenvalues {(n − 1), 0,−1[n−1]}, so

SLE(K1,n) = 2(n − 1). Thus, for a directed star K1,n , we have SLE(K1,n) = 2(n − 1). ��
If all the edges of the star K1,n are oriented away from the center vn+1 except k,

1 ≤ k ≤ n − 1, edges which are oriented towards the center vn+1, then it can be seen
that the skew Laplacian matrix of K1,n is

S̃L(K1,n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 0 · · · 0 −1
0 1 · · · 0 0 · · · 0 −1
.
.
.

.

.

. · · ·
.
.
.

.

.

. · · ·
.
.
.

.

.

.

0 0 · · · 1 0 · · · 0 −1
0 0 · · · 0 −1 · · · 0 1
.
.
.

.

.

. · · · 0 0 · · ·
.
.
.

.

.

.

0 0 · · · 0 0 · · · −1 1
1 1 · · · 1 −1 · · · −1 n − 2k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By direct calculation, it can be seen that the skew Laplacian characteristic polynomial of
this matrix is x(x − 1)k−1(x + 1)n−k−1

(
x2 − (n − 2k)x + n − 1

)
and so its eigenvalues are

{
0, 1[k−1],−1[n−k−1], n−2k+

√
(n−2k)2−4(n−1)

2 ,
n−2k−

√
(n−2k)2−4(n−1)

2

}
.

Therefore, SLE(K1,n) = n − 2 + √
(n − 2k)2 − 4(n − 1). Thus, using Theorem 2.4, we

have SLE(K1,n) = 2(n − 1), if all the edges are oriented towards or away from the center,
and SLE(K1,n) = n − 2 + √

(n − 2k)2 − 4(n − 1), otherwise, where k, 1 ≤ k ≤ n − 1
is the number of edges oriented towards the center, giving the complete description of the
skew Laplacian energy of orientations of K1,n . It is clear that unlike the skew energy of any
orientation of K1,n , which is same as the corresponding energy, the skew Laplacian energy
of orientations of K1,n is not same as the corresponding Laplacian energy.

Moreover, it is also clear that any two orientations which contain edges directed from and
directed to, the center of K1,n are mutually non cospectral digraphs.

3 Bounds for skew Laplacian energy

In this section, we mention some well known bounds for skew Laplacian energy SLE(D),
which gives its connection to various graph parameters. We obtain some bounds for SLE(D)

which are better than already known bounds.
For a digraph with n vertices, m arcs having vertex outdegrees d+

i and vertex indegrees

d−
i , i = 1, 2, . . . , n, let M = −m + 1

2

∑n
i=1

(
d+
i − d−

i

)2
and M1 = M + 2m = m +

1

2

∑n
i=1

(
d+
i − d−

i

)2
. Clearly, M1 ≥ m, with equality if and only if D is Eulerian.

The following bounds are obtained in the basic paper [3] for skew Laplacian energy
SLE(D) of a digraph D , which are analogues to the corresponding bounds on Laplacian
energy LE(G).

Theorem 3.1 Let D be a simple digraph possessing n vertices, m arcs and p compo-
nents. Assume that d+

i and d−
i respectively are the outdegree and indegree of the vertex vi ,

i = 1, 2, . . . , n and ν1, ν2, . . . , νn are the skew Laplacian eigenvalues of D . Then
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2
√|M | ≤ SLE(D) ≤ √

2M1(n − p). (3.1)

Equality occurs on the left if and only if for each pair of νi1ν j1 and νi2ν j2 (i1 �= j1, i2 �= j2),
there exists a non-negative real number k such that νi1ν j1 = kνi2ν j2 ; and for each pair of
ν2i1 and ν2i2 , there exists a non-negative real number l such that ν

2
i1

= lν2i2 . Equality occurs on

the right if and only if D is 0-regular or for each vi ∈ V (D), d+
i = d−

i , and the eigenvalues

of S̃L(D) are 0[p], (ai)[
n−p
2 ], (−ai)[

n−p
2 ](a > 0).

As an immediate consequence to Theorem 3.1, we have the following result.

Corollary 3.2 Let D be a simple digraph possessing p components C1,C2, . . . ,Cp. If
SLE(D) = √

2M1(n − p) , then each componentCi is Eulerianwith odd number of vertices.

Since n − p ≤ n, we have the following consequence of Theorem 3.1.

Corollary 3.3 For any simple digraph D, SLE(D) ≤ √
2M1n.

If D has no isolated vertices, then n ≤ 2m, and so
√
2M1n ≤ 2

√
M1m ≤ 2M1. Thus we

have the following observation.

Corollary 3.4 For any simple digraph D, SLE(D) ≤ 2M1.

We now obtain a Koolen type upper bound (see [15]) for SLE(D).

Theorem 3.5 LetD be a simple digraph with n vertices, m arcs and p components. Assume
that t = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−p| ≥ 0, where ν1, ν2, . . . , νn−p, 0[p] are the eigenvalues
of S̃L(D). Then

SLE(D) ≤ t +
√

(n − p − 1)(2M1 − t2).

Equality occurs if and only if D is 0-regular or for each vi ∈ V (D), d+
i = d−

i , and the

eigenvalues of S̃L(D) are 0[p], (ai)[
n−p
2 ], (−ai)[

n−p
2 ](a > 0).

Proof Let S̃L(D) = (li j ). By Schur’s triangularization theorem [13], there exists a unitary
matrix U such that U∗ S̃L(D)U = T , where T = (ti j ) is an upper triangular matrix with
diagonal entries tii = νi , i = 1, 2, . . . , n. Therefore,

n∑

i, j=1

|li j |2 =
n∑

i, j=1

|ti j |2 ≥
n∑

i=1

|tii |2 =
n∑

i=1

|νi |2,

that is,
n∑

i=1

|νi |2 ≤
n∑

i, j=1

|li j |2 =
n∑

i, j=1

(d+
i − d−

i )2 + 2m = 2M1. (3.2)

Now, applying Cauchy–Schwarz’s inequality to vectors (|ν2|, |ν3|, . . . , |νn−p|) and
(1, 1, . . . , 1) and using (3.2), we have

SLE(D) − |ν1| =
n∑

i=2

|νi | =
n−p∑

i=2

|νi | ≤
√
√
√
√(n − p − 1)

n−p∑

i=2

|νi |2

=
√
√
√
√(n − p − 1)

n∑

i=2

|νi |2 ≤
√

(n − p − 1)(2M1 − |ν1|2).

123



H. A. Ganie, B. A. Chat

This gives,

SLE(D) ≤ t +
√

(n − p − 1)(2M1 − t2).

Equality case can be discussed similarly as in Theorem 3.1. ��
The following arithmetic–geometric mean inequality can be found in [16].

Lemma 3.6 If a1, a2, . . . , an are non-negative numbers, then

n

⎡

⎢
⎣
1

n

n∑

j=1

a j −
⎛

⎝
n∏

j=1

a j

⎞

⎠

1
n
⎤

⎥
⎦ ≤ n

n∑

j=1

a j −
⎛

⎝
n∑

j=1

√
a j

⎞

⎠

2

≤ n(n − 1)

⎡

⎢
⎣
1

n

n∑

j=1

a j −
⎛

⎝
n∏

j=1

a j

⎞

⎠

1
n
⎤

⎥
⎦ .

Moreover equality occurs if and only if a1 = a2 = · · · = an.

The following inequality was obtained by Furuichi [8].

Lemma 3.7 For a1, a2, . . . , an ≥ 0 and p1, p2, . . . , pn ≥ 0 such that
∑n

j=1 pi = 1,

n∑

j=1

a j p j −
n∏

j=1

a
p j
j ≥ nλ

⎛

⎝
1

n

n∑

j=1

a j −
n∏

j=1

a
1
n
j

⎞

⎠ ,

whereλ = min{p1, p2, . . . , pn}.Moreover equality occurs if and only if a1 = a2 = · · · = an.

For a connected digraph D , let K = ∏n−1
j=1 |ν j |, where |ν1| ≥ |ν2| ≥ |νn−1| ≥ 0 are the

absolute values of the eigenvalues of S̃L(D).
The following gives a lower bound for SLE(D) in terms of the number of vertices n and

the number K .

Theorem 3.8 Let D be a simple connected digraph with n ≥ 3 vertices and m arcs having
skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with t = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−1| ≥ 0.
Then

SLE(D) ≥ t + (n − 2)K
1

n−1

(
K

1
2(n−1)(n−2)

t
1

2n−4

− 1

)

, (3.3)

with equality if and only if t = |ν1| = |ν2| = · · · = |νn−1|.
Proof Setting n = n−1, a j = |ν j |, for j = 1, 2, . . . , n−1, p1 = 1

2(n−1) , p j = 2n−3
2(n−1)(n−2) ,

for j = 2, 3, . . . , n − 1 in Lemma 3.7, we have

|ν1|
2(n − 1)

+ 2n − 3

2(n − 1)(n − 2)

n−1∑

j=2

|ν j | − |ν1|
1

2(n−1)

n−1∏

j=2

|ν j |
2n−3

2(n−1)(n−2)

≥ 1

2(n − 1)

n−1∑

j=1

|ν j | − 1

2

n−1∏

j=1

|ν j | 1
n−1 ,
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that is,

|ν1|
2(n − 1)

+ 2n − 3

2(n − 1)(n − 2)
(SLE(D) − |ν1|) − |ν1|

−1
2(n−2) K

2n−3
2(n−1)(n−2)

≥ 1

2(n − 1)
SLE(D) − 1

2
K

1
n−1 ,

this gives,

SLE(D) ≥ 2(n − 2)

(
|ν1|

2(n − 1)
+ K

2n−3
2(n−1)(n−2)

|ν1|
1

2(n−2)

− 1

2
K

1
n−1

)

,

from this the result follows.
Equality occurs in (3.3) if and only if equality occurs in Lemma 3.7, that is if and only if

t = |ν1| = |ν2| = · · · = |νn−1|. ��
We now obtain the bounds for SLE(D) in terms of the number of vertices n, the numbers

K , M and M1.

Theorem 3.9 Let D be a simple connected digraph with n ≥ 3 vertices and m arcs having
skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with |ν1| ≥ |ν2| ≥ · · · ≥ |νn−1| ≥ 0. Then

√

2|M | + (n − 1)(n − 2)K
2

n−1 ≤ SLE(D) ≤
√

2M1(n − 2) + (n − 1)K
2

n−1 , (3.4)

with equality on the left if and only if for each pair ν2i1 and ν2i2 , there exists a non-

negative real number l such that ν2i1 = lν2i2 and the equality on right occurs if and only

if D is 0-regular or for each vi ∈ V (D), d+
i = d−

i , and the eigenvalues of S̃L(D) are

0[p], (ai)[
n−p
2 ], (−ai)[

n−p
2 ](a > 0).

Proof Setting n = n − 1 and a j = |ν j |2, for j = 1, 2, . . . , n − 1 in Lemma 3.6, we have

α ≤ (n − 1)
n−1∑

j=1

|ν j |2 −
⎛

⎝
n−1∑

j=1

|ν j |
⎞

⎠

2

≤ (n − 2)α,

that is,

α ≤ (n − 1)
n−1∑

j=1

|ν j |2 − (SLE(D))2 ≤ (n − 2)α, (3.5)

where

α = (n − 1)

⎡

⎢
⎣

1

n − 1

n−1∑

j=1

|ν j |2 −
⎛

⎝
n−1∏

j=1

|ν j |2
⎞

⎠

1
n−1
⎤

⎥
⎦

=
n−1∑

j=1

|ν j |2 − (n − 1)

⎛

⎝
n−1∏

j=1

|ν j |
⎞

⎠

2
n−1

=
n−1∑

j=1

|ν j |2 − (n − 1)K
2

n−1 .
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Using (3.2) and the value of α, we have from the left inequality of (3.5)

(SLE(D))2 ≤ (n − 2)
n−1∑

j=1

|ν j |2 + (n − 1)K
2

n−1 ,

that is,

SLE(D) ≤
√

2M1(n − 2) + (n − 1)K
2

n−1 ,

this proves the right inequality.
Now, using (7) from [3] and the value of α, we have from the right inequality of (3.5)

(SLE(D))2 ≥
n−1∑

j=1

|ν j |2 + (n − 1)(n − 2)K
2

n−1 ,

that is,

SLE(D) ≥
√

2|M | + (n − 1)(n − 2)K
2

n−1 ,

this proves the left inequality.
Equality case can be discussed similarly as in Theorem 3.1. ��

Remark 3.10 The upper bound given by Theorem 3.9, is better than the upper bound given
by Theorem 3.1 for all connected digraphs D . As by arithmetic–geometric mean inequality,
we have

2M1 ≥
n−1∑

j=1

|ν j |2 ≥ (n − 1)

⎛

⎝
n−1∏

j=1

|ν j |
⎞

⎠

2
n−1

= (n − 1)K
2

n−1 ,

adding 2M1(n − 2) on both sides, we obtain

2M1(n − 1) ≥ 2M1(n − 2) + (n − 1)K
2

n−1 ,

from which the result follows.

Remark 3.11 The lower bound given by Theorem 3.9, is better than the lower bound given

by Theorem 3.1 for all connected digraphs D , with 2|M | ≤ (n − 1)(n − 2)K
2

n−1 .

4 Conclusion

We conclude this paper with the following problems. These problems have been already
considered for different energies associated with the graphs and digraphs. Therefore, it will
be interest in the future research to study these problems.

Problem 4.1 Interpret all the coefficients of the characteristic polynomial of S̃L(D) in terms
of D .

Problem 4.2 Establish the possible relations between the largest and smallest skew Lapla-
cian eigenvalue of a digraph D with the parameters associated with the digraph.
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Problem 4.3 Establish the possible relations between the skew Laplacian spectrum of a
digraph D and the Laplacian spectrum of the corresponding underlying graph GD .

Problem 4.4 For any orientation, give the complete description for the skew Laplacian
energy of the cycle Cn .

Problem 4.5 Characterise all the non-Eulerian digraphs D for which SLE(D) = Es(D).

Problem 4.6 If possible, interpret skew Laplacian energy in chemistry and other disciplines.
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