

Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 6 No. 1 (2017), pp. 21-27. © 2017 University of Isfahan

THE CONDITION FOR A SEQUENCE TO BE POTENTIALLY $A_{L,M}$ - GRAPHIC

SHARIEFUDDIN PIRZADA* AND BILAL A. CHAT

Communicated by Alireza Ashrafi

ABSTRACT. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \ldots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . The complete product split graph on L + M vertices is denoted by $\overline{S}_{L,M} = K_L \vee \overline{K}_M$, where K_L and K_M are complete graphs respectively on $L = \sum_{i=1}^p r_i$ and $M = \sum_{i=1}^p s_i$ vertices with r_i and s_i being integers. Another split graph is denoted by $S_{L,M} = \overline{S}_{r_1,s_1} \vee \overline{S}_{r_2,s_2} \vee \cdots \vee \overline{S}_{r_p,s_p} =$ $(K_{r_1} \vee \overline{K}_{s_1}) \vee (K_{r_2} \vee \overline{K}_{s_2}) \vee \cdots \vee (K_{r_p} \vee \overline{K}_{s_p})$. A sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be potentially $S_{L,M}$ -graphic (respectively $\overline{S}_{L,M}$)-graphic if there is a realization G of π containing $S_{L,M}$ (respectively $\overline{S}_{L,M}$) as a subgraph. If π has a realization G containing $S_{L,M}$ on those vertices having degrees d_1, d_2, \ldots, d_n) is potentially $A_{L,M}$ -graphic. A non-increasing sequence of non-negative integers $\pi = (d_1, d_2, \ldots, d_n)$ is potentially $A_{L,M}$ -graphic if and only if it is potentially $S_{L,M}$ -graphic. In this paper, we obtain the sufficient condition for a graphic sequence to be potentially $A_{L,M}$ -graphic and this result is a generalization of that given by J. H. Yin on split graphs.

1. Introduction

Let G(V, E) be a simple graph (a graph without multiple edges and loops) with n vertices and medges having vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \ldots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . There are several famous results, Havel and Hakimi [3, 4] and Erdös and Gallai [1] which give necessary and sufficient conditions for a sequence

MSC(2010): 05C07.

Keywords: Split graph, complete product split graph, potentially H-graphic Sequences.

Received: 08 May 2014, Accepted: 19 July 2016.

^{*}Corresponding author.