

Structural analysis and theoretical studies of 2-(2-chlorobenzylidene) malononitrile (CS) "a riot controlling agent"

Mohd Z. Shaikh^a, Aigul Abduldayeva^b, Abdallah S. Shatat^c, Mandeep Kaur^{d,e}, Harpreet Kaur^{f,g}, Arwa O. Al Khatib^h, Anoop Devⁱ, Mohit Gupta^j, G.V. Siva Prasad^k, Aashna Sinha^l, Tahani M. Almutairi^m, Raymond J. Butcherⁿ, Muzzaffar A. Bhat^{o,*}

^a Shree Bahubhai Mafatlal Polytechnic College, Irla, Vile Parle(W), Mumbai 400056, India

^b Department of Research Institute of Preventive Medicine Named Academician E. Dalenov, Astana Medical University, Astana 010000, Kazakhstan

^c Management Information Systems Department, College of Administrative Sciences, Applied Science University, Al Eker, Bahrain

^d Department of Chemistry, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India

^e Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India

^f School of Basic and Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India

^g Department of Health and Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India

^h Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Jordan

ⁱ Centre of Research Impact and Outcome, Chitkara University, Rajpur 140417, Punjab, India

^j Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India

^k Department of Chemistry, Raghu Engineering College Visakhapatnam, Andhra Pradesh 531162, India

^l School of Applied and Life Sciences, Division of Research and Innovation, Uttarakhand University, Dehradun, Uttarakhand, India

^m Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

ⁿ Department of Chemistry, Howard University, Washington DC 20059, USA

^o Department of Chemistry, Islamic University of Science and Technology, Awantipora 192122, Pulwama, India

ARTICLE INFO

Keywords:

X-ray diffraction

Hirshfeld surface

DFT studies

PASS

Docking

ABSTRACT

In solvent methanol, malononitrile and 2-chlorobenzaldehyde were stirred in the presence of base piperidine to synthesise the target chemical 2-(2-chlorobenzylidene) malononitrile (CS). The crystal structure of the target compound $C_{10}H_5ClN_2$ has been elucidated through X-ray crystallographic analysis. It crystallises in the monoclinic crystal system within the P21 space group, containing four molecules per asymmetric unit. The unit cell dimensions are $a = 3.8825(3)$ Å, $b = 21.0202(18)$ Å, $c = 21.3481(18)$ Å, and $\beta = 95.096(4)$ °. The phenyl and malononitrile groups, which make up the molecular components, are each planar but slanted towards one another at a dihedral angle of 12.7° (4). Besides this, target molecule is also stabilized by hydrogen bonding, halogen bonding and π stacking interactions. Solid-state structure has been analysed through Hirshfeld surface analysis, including the evaluation of the different energy frameworks, indicating that the molecular sheets are primarily formed by hydrogen bonds and halogen bonds and the stabilization is dominated via the electrostatic energy contribution. Fingerprint plots were carried out to study the relative contribution of noncovalent interactions in the target compound CS. Further, the density functional theory calculations were employed using B3LYP hybrid functional with 6-311++G level basic set to optimize the structural coordinates in gas phase and in different solvents (chloroform, water, and methanol). The chemically active regions of the target compound were identified by the analysis of molecular electrostatic potential surface. Further, from PASS analysis and literature reports, molecular docking of title compounds was carried out with human transient receptor potential ankyrin 1 ion channel (hTRPA1) (PDB-ID 6PQO). ΔG_b (docking energy) and inhibition constant was calculated to be -7.53 kcal/mol and 3.33 μ M respectively, with the target ion channel.

* Corresponding author.

E-mail address: muzzaffarbhat9@gmail.com (M.A. Bhat).