

Structural investigations, theoretical analysis, chemosensing characteristics and molecular docking studies of t-butyl carbazate based novel aldimine

Mohd. Z. Shaikh ^a, Mandeep Kaur ^{b,c}, Harpreet Kaur ^{d,e}, Anoop Dev ^f, Mohit Gupta ^g, G. V. Siva Prasad ^h, Aashna Sinha ⁱ, D. Alex Anand ^j, Laxmidhar Maharana ^k, Kamal K. Joshi ^l, Tahani M. Almutairi ^m, Raymond J. Butcher ⁿ, Muzzaffar A. Bhat ^{o,*}, K. Srishailam ^p

^a Shree Bahubhai Mafatlal Polytechnic College, Irla, Vile Parle(W), Mumbai 400056, India

^b Department of Chemistry, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India

^c Department of Sciences, Vivekananda Global University Jaipur, Rajasthan 303012, India

^d School of Basic and Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India

^e Department of Health and Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India

^f Centre of Research Impact and Outcome, Chitkara University Rajpur 140417, Punjab India

^g Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India

^h Department of Chemistry, Raghu Engineering College Visakhapatnam, Andhra Pradesh 531162, India

ⁱ School of Applied and Life Sciences, Division of Research and Innovation, Uttarakhand University, Dehradun, Uttarakhand, India

^j Department of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar, Odisha 751030, India

^k Department of Allied Science, Graphic Era Hill University, Dehradun 343002, Uttarakhand, India

^l Department of Biomedical Science, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India

^m Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

ⁿ Department of Chemistry, Howard University, Washington DC, 20059, USA

^o Department of Chemistry, Islamic University of Science and Technology, Awanitpura 192122, Pulwama, India

^p Department of Basic Sciences, School of Sciences and Humanities, SR University, Warangal 506371, Telangana, India

ARTICLE INFO

Keywords:

Crystallography

Hirshfeld surface

DFT studies, Fluorescence, UV-Vis

ABSTRACT

The reaction of tert-butyl carbazate and 2-hydroxybenzaldehyde in a methanol solvent with a catalytic amount of glacial acetic acid produced tert-butyl (E)-2-(2-hydroxybenzylidene)hydrazine-1-carboxylate (TBCS) and was characterised by experimental NMR (¹H, ¹³C), FT-IR spectrum (4000-400 cm⁻¹). In the P bca space group, X-ray crystallography established the orthorhombic crystal structure of the target molecule, C₁₂H₁₆N₂O₃. One molecule makes up the asymmetric unit, which has unit cell dimensions of a = 10.8241(4) Å, b = 10.4072(4) Å, c = 21.9875(8) Å, and angles $\alpha=\beta=\gamma=90^\circ$. There are several hydrogen bonding connections and π stacking interactions between the molecules in the crystal packing. The study of the Hirshfeld surface employed various energy frameworks, enabling a thorough examination of the solid-state structure. The results demonstrate that electrostatic energy plays a vital role in maintaining the stability of molecular sheets, while hydrogen bonds primarily contribute to their expansion. Fingerprint plots were created to evaluate the relative importance of noncovalent interactions in the target compound, TBCS. Energy framework calculations have also been performed to delve deeper into understanding the intermolecular interactions. The enrichment ratios show that the favorable contacts accountable for the crystal packing are O···H-C, N···H-C, O···H, and N···H. The intermolecular interactions are further characterized using Bader's theory of "atoms in molecules" (QTAIM) and the "non-covalent" (NCI) interaction plot index. The nature and strength of noncovalent interactions are analyzed from the topological parameters at (3, -1) bond critical points (BCPs). The application of density functional theory (DFT) calculations utilising the B3LYP hybrid functional alongside a TZVP basis set improved the accuracy of structural coordinates, Infrared intensities, harmonic vibrational fundamentals, potential energy distribution (PED) and various electronic parameters in both gas phase and a range of solvents, such as methanol, water, DMSO, and chloroform. TBCS functions as an effective fluorescent chemosensor specifically designed for the detection of Zn²⁺ ions. The probe exhibits increased fluorescence upon immersion in methanol solutions that contain Zn²⁺ ions. This study utilised UV-Vis and fluorescence titration methods to examine the binding mechanism of TBCS

* Corresponding author.

E-mail address: muzzaffarbhat9@gmail.com (M.A. Bhat).