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Abstract:  The concept of weighted distribution can be employed in development of proper model for life time 

data. In this paper a new weighted probability model called weighted inverse log logistic distribution is 

proposed. The statistical properties of weighted inverse log-logistic distribution are derived and the model 

parameters are estimated by maximum likelihood estimation. A simulation study is conducted to compare the 

different life time distribution. Finally, an application to real data set is presented for illustration. 

 

Keywords: Weighted Distribution; Inverse Log Logistic; Maximum Likelihood Estimation. 

 

 

1. Introduction 

 

The log-logistic distribution is a derivative of the 

very popular logistic distribution which was 

initially developed to model population growth by 

Verhulst (1838). Since the development of logistic 

growth curve there have been several 

contributions suggesting alternative functional 

forms for growth whilst retaining the sigmoid and 

asymptotic property of the Verhulst logistic 

curve.In probability theory, the log-logistic 

distribution is a continuous probability 

distribution used in survival analysis as a 

parametric model whose probability density 

function (pdf) is given  for events whose rate 

increases initially and decreases later, for example 

mortality rate from cancer following diagnosis or 

treatment. The inverse of log-logistic model also 

provides a greater flexibility in survival data sets. 

The probability density function (pdf) of the 

inverse log-logistic is given by 
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The inverse log-logistic distribution is broadly used 

in practice and it is a substitute to the log-normal 

distribution since it presents a failure rate function 

that increases, touches a peak after some finite 

period and then declines gradually. The properties 

of the log-logistic distribution make it an attractive 

substitute to the log-normal and Weibull 

distributions in the analysis of reliability data 

(2003). Gupta et al.(1991) made a study of log-

logistic model in survival analysis. Ragab et al. 

(1984) developed order statistics from the log-

logistic distribution and their properties. Collet 

(2003) suggested the log-logistic distribution for 

modeling the time following a heart 

transplantation. Kantam et al. (2001) studied 

acceptance sampling based on life tests: log- 

logistic model. 

2.  Weighted Inverse Log-logistic 

distribution 

Weighted distribution theory gives an integrated 

method to study with model design and data 

interpretation problems. Weighted distributions arise 

commonly in studies connected to reliability, survival 

analysis, analysis of family data, biomedicine, 

ecology and several other areas, see Stene (1981) and 

Oluyede and George (2002).  Gupta and Tripathi 

(1996) studied the weighted version of the bivariate 

logarithmic series distribution, which has 

applications in many fields such as: ecology, social 

and behavioral sciences. Ahmed et al. (2016) 

discussed length biased weighted Lomax distribution 

with its applications. To existent the idea of a 

weighted distribution, suppose that X is a 

nonnegative random variable with its probability 

density function (pdf) , then the p.d.f. of the 

weighted random variable  is known by 

 
   

  xwE

xfxw
xf w  0x       (2) 

where  be a non-negative weight function. 

    Conditional upon the choice of the weight 

function , we have different weighted models. 

In this paper we have introduced a weighted family 

of inverse log-logistic distributions by taking the 

weight as , to inverse log-logistic distribution. 

Substituting equation (1) and , in equation 
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(2) we get the pdf of weighted inverse of log-logistic 

distribution as given below 
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Figure 1.1 represents different shapes of 

probability density function of weighted inverse 

log logistic distribution. 

 
 

3. Statistical Properties 

In this section we shall discuss structural properties 

of weighted inverse log-logistic distribution, 

especially moments, coefficient of variation, moment 

generating function. 

3.1 Moments 

Suppose X denote the random variable of weighted 

inverse log-logistic distribution with parameters  and 

c, then     
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 Substituting   r = 1,2,3,4 in expression (4), we get 

first four moments 
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3.2 Moment generating function 

In this sub section we derived the moment generating 

function of weighted inverse log-logistic distribution. 

From the definition of moment generating function we 

have  
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  3.3 Mode 

In order to discuss monotonicity of weighted inverse 

log-logistic distribution, we take the logarithm of its pdf 

as follows 
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Differentiating the above equation with respect to x and 

equating to zero, we obtain 



International Journal of Statistics and Reliability Engineering 

 

303 

 

 


 
/1

/1

c

c2
1x 







 
         (10) 

 

 

4. Entropy 

Entropy is a measure of variation of the uncertainty in 

the distribution of any random variable. It provides 

important tools to indicate variety in distributions at 

particular moments in time and to analyze evolutionary 

processes over time. In this section we derive the 

Shannon’s and Reniy’s Entropy for weighted inverse log 

logistic distribution. 

4.1 Shannon’s Entropy 

Shannon Entropy is H(x) for weighted inverse log-

logistic distribution is given by 
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4.2. Rényi Entropy 

 For a given probability distribution, Rényi (1961) 

gave an expression of the entropy function, so called 

Rényi entropy, defined by 

    










 dxxflog

1

1
Re




        (12) 

Where γ > 0 and γ ≠ 0. For Weighted inverse log-

logistic distribution in (3), we have 
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     Evaluating the integral by suitable substitution by 

putting  tx   we get the 

following,
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  5. Estimation of parameter 

In this section, we derive the estimates of parameters of 

weighted inverse log-logistic by various methods of 

estimation viz method of moments and maximum 

likelihood estimation. 

 

5.1 Method of Maximum Likelihood 

Estimator 
The method Maximum likelihood estimation is the 

most popular technique used for estimating the 

parameters of inverse log-logistic. Let  

be a random sample from the weighted inverse log-

logistic, then the corresponding log likelihood function is 

given by 
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Now differentiating above with respect to the parameters, 

we obtain the normal equations 
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By ratio test the series is convergence for 1
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Using the series (15) by neglecting the second and 

higher degree terms and substituting in the expansion 

(14) we obtained the following normal equation, 
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This equation can be solved using Newton-Raphson 

method which is a powerful technique for solving 

equations iteratively and numerically. 
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5.2 Methods of Moments 

Replacing sample moment with population 

moments, we get 
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From the expressions (19) and (20) we get the 

following expression. 
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      Equations (19) and (21) are complex cannot be solved 

analytically, thus statistical R software can be used to 

solve these equations numerically. We can use iterative 

techniques to obtain the estimates. 

6. Application 

   Data 1: The first data set represents the survival times (in 

days) of 72 guinea pigs infected with virulent tubercle 

bacilli, observed and reported by Bjerkedal (1960). The 

data are as follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 

0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 

1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 

1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 

1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 

2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 

2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 

2.54, 0.77 

Data 11: The second data set correspond the failure times 

of 84 for a particular model aircraft windshield. This data 

are reported in the book "Weibull Models" by Murthy et 

al.(2004). This data consist of 84 failed windshield, the 

unit for measurement is 1000 h. The data are : 0.040, 

1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 

0.309,1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 

0.943, 1.912, 2.632, 3.595, 1.070,1.914, 2.646, 3.699, 

1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 

1.281,2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 

1.303, 2.089, 2.902, 4.167, 1.432,2.097, 2.934, 4.240, 

1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,   

1.506,2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 

1.615, 2.223, 3.114, 4.449, 1.619,2.224, 3.117, 4.485, 

1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 

1.757,2.324, 3.376, 4.663. 

  In order to compare the two distribution 

models, we consider the criteria like AIC (Akaike 

information criterion, AICC (corrected Akaike 

information criterion) and BIC (Bayesian information 

criterion. The better distribution corresponds to lesser 

AIC, AICC and BIC values. From Table 6.1 and 6.2, it 

has been observed that the weighted inverse log logistic 

have the lesser AIC, AICC, -2logL and BIC values as 

compared to Inverse Log logistic Distribution. Hence we 

can conclude that weighted inverse log logistic 

distribution leads to a better fit as compared to inverse 

log logistic distribution. 

Table 6.1: ML estimates and Criteria for Comparison for data of Survival times of a group 

pigs infected with virulent tubercle bacilli disease. 

Distribution Estimates S.E -2logL AIC AICC BIC 

Weighted Inverse 

log-logistic 

 2.97182 

 

c = 0.96035 

0.325

84 

0.261

65 

 

196.0258 

 

200.0258 

 

200.1997 

 

208.5545 

Inverse log logistic  2.37185 0.23255 217.8636 219.8636 219.9207 224.1967 

 

Table 6.2: ML estimates and Criteria for Comparison for data correspond the failure times 

of 84 for a particular model aircraft windshield. 

Distribution Estimates S.E -2logL AIC AICC BIC 

Weighted Inverse 

log-logistic 
51315.2

c =1.2492 

0.27381 

0.25595 

 

330.3822 

 

334.3822 

 

334.5303 

 

343.3919 

Inverse log logistic  1.57083 0.13650 385.5481 387.5481 387.5968 391.9789 
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Conclusion 
      In this paper, we have introduced a new 

generalization of inverse log logistic distribution using the 

concept of weighting. The statistical properties of this 

distribution are derived and the model parameters are 

estimated by maximum likelihood estimation. Finally, an 

application to real data set is presented for illustration in 

engineering and medical sciences .The application of the 

weighted inverse log logistic distributions have also been 

demonstrated with real life examples from medical science. 

The results are compared with inverse log logistic 

distribution, revealed that the weighted inverse log logistic 

model provides a better fit than the inverse log logistic 

distribution. 
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