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1.Introduction 
Machine learning has enjoyed a diversified history, 

having its origin in many interdisciplinary subjects 

like computational learning theory and pattern 

recognition, cognitive science, neuroscience, and 

other disciplines [1]. This field of computer science 

does not require machines to be programmed using 

static or rigid instructions in order to act. It focuses 

on developing algorithms that learn from the data and 

then make predictions based on that data set without 

human intervention. There are two important 

contemporary paradigms in machine learning. The 

first is generative or Bayesian learning and the other 

one is discriminative learning of classifiers [2, 3].  
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The generative model is a strong unsupervised 

learning method for learning any distribution of data 

and has experienced considerable success in a short 

amount of time. The idea behind such models is to 

generate new data instances or configurations. They 

can generate new photos of different types of objects 

that look like real ones. They enable users to provide 

information about the problem to the learning 

algorithm using prior distributions, structured 

models, independence graphs, probabilistic 

reasoning, Markov assumptions, and latent variables. 

It includes the data's distribution and indicates the 

likelihood of a certain example. For instance, the 

models used to determine the subsequent word in a 

series belong to the category of generative models 

because each word in the sequence is assigned a 

probability. These generative models include 

mixtures of multinomial, mixtures of experts, naïve 
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Abstract  
Generative adversarial networks (GANs) have turned up as the most widely used approaches for creating realistic 

samples. They're the effective latent variable models for learning complex real distributions. However, despite their 

enormous success and popularity, the process of training GANs remains challenging and suffers from a number of 

failures. These failures include mode collapse where the generator generates the same set of output for different inputs 

which finally leads to loss of diversity; non-convergence because of the diverging and oscillatory behaviors of both 

generator and discriminator while being trained; and vanishing or exploding gradients due to which either no learning or 

extremely slow learning takes place. In the past years, a variety of strategies for stabilizing GAN training have been 

explored which includes modified architectures, loss functions, and other methods. The choice of loss function has been 

found to be the most crucial part of the GAN model because it influences the vanishing gradient and model collapse 

directly. Viewing these loss functions as divergence minimization has provided a rich avenue of development. All of these 

factors make GAN training inherently unstable, and this instability is difficult to comprehend mathematically. This paper 

intends to provide a thorough mathematical explanation of these divergence minimization functions. It illustrates in great 

detail the two variants of the loss functions of the original GAN, their optimization to Kullback-Leibler (KL) divergence 

and Jensen-Shannon (JS) divergence along with their shortcomings. It also describes the loss functions of the different 

loss function GAN variants that have been proposed to mitigate these shortcomings as well as their minimization. The 

original GAN and its loss function variants have also been implemented using the standard MNIST, Fashion-MNIST, 

and CIFAR-10 datasets. 
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