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ABSTRACT
The effect of Co doping on the conduction mechanism of polycrystalline NdMn0.3Co0.7O3 (NMCO7) sample, is studied by measuring the
temperature-dependent dc resistivity ρ (T) from 150 K to 400 K. The temperature dependence of electrical resistivity indicates a typical
semiconducting behavior of NMCO7. The electrical resistivity data as a function of temperature is fitted using models such as the Arrhenius
law, small polaron hopping, and Mott-variable range hopping. The data follows the thermal activation and the small polaron hopping model
in the high-temperature region, the latter account for electron–phonon interaction. In contrast, at lower temperatures, the Mott-VRH yield
better results. Hence, in the NMCO7 system, the charge transport properties are governed by a complex interplay among thermal activation
localized electronic states, and Coulomb interactions.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000919

I. INTRODUCTION

AMnO3-type manganites have attracted considerable research
attention over the last few decades due to their diverse physical
properties, which arise from the interplay between lattice, orbital,
and spin degrees of freedom. Many researchers have focused on
investigating their potential for various technological applications,
including magnetic sensors, read heads, magnetic data storage,
infrared detectors, and other spintronic devices.1 In rare-earth
manganites, RMnO3 (R is a rare-earth element), the transition
metal ions and their oxidation states are pivotal in determining
the material’s electrical and magnetic properties.2,3 For instance,
in LaMnO3, doping with Co or Ca, Sr, and Pb at the Mn site or
the La site respectively induces mixed valency in Mn i.e., Mn3+

and Mn4+.4,5 This mixed valency facilitates rapid electron hopping
between Mn3+ and Mn4+ via the double-exchange (DE) mechanism,
imparting ferromagnetic character to the ground state and the other
key electrical properties. The DE mechanism is dependent on the
Mn–O bond lengths and Mn–O–Mn bond angle.6,7 The modifica-
tion of structural, transport, and magnetic properties in perovskite
manganites has also been achieved through doping with other
cations.6,8,9

NdMnO3 is a fascinating rare-earth manganite that exhibits
ferromagnetic ordering within the Nd sublattice at T l = 20 K
and A-type antiferromagnetic ordering of Mn ions at TN = 82 K,
where TN represent the Néel temperature.10–12 The Mn3+/Mn4+

ratio significantly contributes to the complexity and uniqueness of
the transport and magnetic properties in Nd-based manganites,13,14

distinguishing them from La-based manganites.15

Wang et al. have extensively studied the electrical transport
properties etc. of NdMnO3 and other manganites.2,3,16–19 They
explained electrical transport properties of NdMnO3 using thermal
activation model and a weak magnetoresistance of ∼8% under a
6 T magnetic field.16 In a different study on Nd1−xSrxMnO3 (0.2
≤ x ≤ 0.5) the complex magnetic behavior was attributed to the
competition between double-exchange (dominating below TC) and
polarons (significant above TC).2 Related studies on SrMnO3 report
significant magnetoresistance (16.68%) under a 6 T field near room
temperature,17,18 while La1−xBaxMnO3 shows a Griffiths phase and
large magnetoresistance (∼44.7%) at room temperature under a
6 T field, highlighting the potential of manganites for MR device
applications.19

We carried out temperature-dependent resistivity measure-
ments of NdMnO3 doped with 70% Co (NdMn0.3Co0.7O3) to
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examine its electrical properties. The resistivity data was analyzed
using thermal activation, small polaron hopping (SPH), and variable
range hopping (VRH) models.

II. EXPERIMENT
The single-phase NdMn0.3Co0.7O3 (NMCO7), (the x-ray

diffraction spectrum is reported somewhere else20) sample was syn-
thesized using a solid-state reaction method. High-purity oxides
(Nd2O3, MnO2, and Co3O4) were combined in stoichiometric ratios
and thoroughly ground with an agate mortar to achieve a homoge-
neous mixture. After the mixture was calcined, it sintered at 900 ○C
for ∼20 h. The sintered powder was then pressed into pellets with a
diameter of 10 mm and subjected to a second sintering at 1150 ○C
for 24 h. The resistivity versus temperature measurements were
conducted utilizing resistivity measurement set up at UGC DAE,
Indore.

III. RESULTS AND DISCUSSIONS
A. Transport studies

The variation of resistivity with temperature for the NMCO7
sample from 150 K to 400 K is shown in Fig. 1. The figure
depicts a decrease in the sample’s resistivity with increasing tem-
perature, demonstrating typical semiconducting behavior. Mixed
valence manganites exhibit a complicated transport mechanism
that can be characterized by several models, including the ther-
mal activation model or bandgap model, SPH, and VRH. Cer-
tain perovskites can exhibit all three mechanisms across different
temperature ranges.21,22 These models offer a valuable theoretical
framework for understanding the electrical transport behavior of

TABLE I. Fit parameters for NMCO7 sample calculated using thermal activation and
SPH model.

Sample Ea (eV) Ep (eV) θD
2 (K) νph (Hz) γp

J
φ

NMCO7 0.2108 0.238 579 265.67 1.107 × 1013 10.422 0.880

perovskite semiconductor materials, capturing the intricate elec-
tronic dynamics involved in these materials.

To study the conduction mechanism in the NMCO7 sample,
we fitted the experimental resistivity data with the above mentioned
models. In the high-temperature regime, the data follows ther-
mal activation and the SPH model. The thermal activation model
suggests that carriers in perovskite semiconductors must acquire
sufficient thermal energy to surpass the lattice potential barrier,
thereby enabling transport within the crystal.16 In these scenarios,
the resistivity adheres to the Boltzmann law, which is expressed as
follows:

ρ = ρ0e
Ea
KBT (1)

Here ρo represents a pre-exponential factor, Ea denotes the acti-
vation energy, and KB is the Boltzmann constant. The Ea for the
NMCO7 sample (as shown in Table I) is obtained from the slope
of lnρ versus 1/T graph presented in Fig. 2(a).

The Boltzmann law, commonly used to describe ther-
mally activated transport, does not account for the influence of
electron–phonon (e-ph) interactions. Therefore, to delve deeper into
the mechanism of hopping conduction and evaluate the strength of
the e-ph interaction, we used the SPH model established by Mott

FIG. 1. Temperature-dependent resistiv-
ity of NMCO7.
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FIG. 2. Plots of (a) ln ρ vs T−1 (b) ln ρ/T
vs T−1 (c) ln ρ vs T−1/4 for NMCO7 fitted
using thermal activation, SPH, and Mott-
VRH respectively.

and Davis23 to fit the temperature-dependent resistivity data. Fur-
thermore, it has been established that, in rare-earth transition metal
oxide systems, high-temperature transport is predominantly gov-
erned by the thermally activated hopping of small polarons.23 The
SPH model describes the coupling of electrons or holes in the per-
ovskite semiconductor with the polarization field induced by lattice
distortions, resulting in the formation of a quasi-particle known as
the small polaron.16 Based on this model, the expression for electrical
resistivity can be represented as follows:23–25

ρ
T
= ρ0e

Ep
KBT (2)

Where ρo represents a pre-exponential factor, Ep is the activation
energy of small polarons, and KB denotes the Boltzmann constant.
The Ep for the NMCO7 sample (as given in Table I) is inferred from
the slope of ln(ρ/T) versus 1/T graph displayed in Fig. 2(b).

In Fig. 2(b) the temperature at which deviation from linearity
occurs is referred to as θD

2 (where θD denotes Debye temperature).24

To assess if the polaron conduction is adiabatic or non-adiabatic, we
applied Holstein’s conduction criterion. This criterion specifies that
the polaron bandwidth (J) must satisfy specific conditions.24,26

J > φ or
J
φ
> 1 (for adiabatic hopping)

J < φ or
J
φ
< 1 (for non– adiabatic hopping)

where J and φ are calculated using the following relations:24,26

J ≅ 0 .67hνph( TθD )
1
4

(3)

φ = (2kBTEp
π
)(hνph

π
)

1
2

(4)

in which νph (optical phonon frequency) is computed using the
following expression.24,26,27

νph = kBθD
h

(5)

Using the above equations, we can formulate the following
relation:

J
φ
= 1.33(kBθD

Ep
)

1
4

(6)

Table I shows that the value of J
φ is less than 1, indicating

that the conduction in the sample being studied is determined by
non-adiabatic small polaron hopping. As noted by Austin and Mott,
γp(e-ph coupling parameter) offers insight into the strength of e-ph
interactions and is defined by the relation given in Eq. (7).24,26

γp = 2Ep
hνph

(7)

For γp > 4 strong e-ph interactions are indicated within the sys-
tem, whereas a value <4 suggests weak interactions. The values of νph
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and γp are provided in Table I and for NMCO7 sample γp > 4, reflect-
ing significant electron–phonon interactions in this material. The
strong electron–phonon coupling leads to charge carrier localiza-
tion. The Jahn–Teller distortion from Mn3+ ions20 further localizes
carriers, hindering the hopping process via the double-exchange
mechanism. It also alters the Mn–O–Co or Co–O–Co superex-
change angle and bond length, driving the overlap of O(2p) and
(Mn, Co) (3d) bands, which controls the opening and closing of the
charge transfer gap.

At low temperatures, the thermal activation and SPH models
are typically not applicable. Consequently, to examine the impact of
disorder-induced localization of charge carriers on electrical trans-
port properties, the resistivity data as a function of temperature
was analyzed employing the VRH model, as described below.28,29

The variable range hopping model posits that charge transport in
semiconductors occurs not through conventional band transport,
but rather through “jumps” between localized states.16 VRH model
(Mott-type) is described by

ρ = ρ0e(
To
T )

1
4

(8)

Where the characteristic temperature (To) can be expressed as

To = 18
KBα3n(EF) (9)

Here KB, α, and n(EF) represent Boltzmann’s constant, localization
length, and the density of states at the Fermi level respectively. At
a particular temperature, the hopping energy, Eh(T), and hopping
distance, Rh(T), are defined as.28

Eh(T) = (1
4
)kBT 3

4 To
1
4 (10)

Rh(T) = (3
8
)α(To

T
)

1
4

(11)

The resistivity data for NMCO7, as presented in Fig. 2(c) and
analyzed using Eq. (8), indicates a good agreement with Mott-VRH.
This implies that the conduction mechanism is governed by charge
carrier localization, which arises from disorder in the material.28

This disorder originates from the presence of mixed valent Mn and
Co ions20 that induce distortion in the NMCO7 sample. Applying
the values of To derived from the slope of Fig. 2(c), along with the
above mentioned equations, the density of states, hopping energy,
and hopping distance at 300 K were calculated, assuming a local-
ization length (α) of 4.5 Å as described by Viret et al.30 (refer to
Table II).

TABLE II. Transport parameters for NMCO7 sample calculated using Mott-VRH.

Sample To (K)
n(EF)

(eV−1-m−3)
Eh(T) (eV)

at T = 300 K
Rh(T) (Ao)

at T = 300 K

NMCO7 8.059 × 108 2.844 × 1024 0.262 68.318

IV. CONCLUSIONS
In this study, the electrical transport phenomenon of poly-

crystalline NdMn0.3Co0.7O3 sample was investigated. The sample
exhibited semiconductor properties. Several theoretical models were
employed to analyze the electrical resistivity behavior across differ-
ent temperature regions. The results indicated that the transport
mechanism is governed by thermal activation and SPH models
at high temperatures; however, at low temperatures, Mott-VRH is
applicable.
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